首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响   总被引:2,自引:0,他引:2  
区域气候模式的边界层参数化方案很大程度上影响着陆地-海洋-大气间水汽、动量及热量的交换,该方案的不确定性会给模式结果带来明显误差.本文基于WRF区域气候模式中四种常用的边界层参数化方案(YSU,ACM2,BouLac和MYJ)分别对东亚夏季风进行模拟研究,分析了不同的边界层方案对东亚夏季风环流及降水模拟的影响.结果表明,局地湍流动能方案BouLac和MYJ对东亚夏季风的模拟结果相对于非局地闭合方案YSU和ACM2更接近于观测,前者能更好的模拟出中国东部中低空西南风气流和西太平洋副热带高压.对于东亚夏季风降水,无论是空间分布还是季节内演变,BouLac和MYJ方案都要明显优于YSU和ACM2.此外,通过对比YSU和BouLac两种方案的模拟结果,发现边界层方案对东亚夏季风的模拟在海洋区域的影响更为显著.造成不同方案模拟差异的主要原因是非局地方案YSU和ACM2的边界层垂直混合偏强,使得海表向上输送的潜热通量明显偏强,对流更活跃,导致降水偏多以及相应季风环流的异常偏差.进一步研究指出缺少海气反馈过程使得WRF模式由边界层方案引起的模拟误差在海洋区域更为突出,引入海气耦合可以减小海表热通量误差并明显改善东亚夏季风的模拟结果.  相似文献   

2.
利用WRF模式中5种常用边界层参数化方案(ACM2、YSU、BouLac、MYJ和MYNN2.5)及美国能源部大气辐射观测试验(ARM)寿县综合观测数据(2008年8—12月),对比分析了晴天及阴天条件下,不同参数化方案对典型农田下垫面气象要素及边界层结构的模拟效果,结果表明:(1)模式对于云层状况的模拟,非局地方案ACM2和YSU方案优于局地方案.(2)对于近地层气象要素,晴天和阴天条件下均是ACM2方案对于2 m温度和比湿的模拟效果最好,MYJ方案对于风向风速的模拟效果最好.(3)对于位温及比湿垂直廓线的模拟,晴天和阴天条件下均是非局地方案(ACM2和YSU)对白天的模拟效果优于局地方案;ACM2方案对夜间弱稳定层结和逆湿结构的模拟最优;(4)对于风速垂直廓线的模拟,白天不稳定条件下,晴天条件MYJ方案最优,阴天MYNN2.5方案的模拟效果最好;夜间弱稳定条件下,晴天条件ACM2方案与观测值之间的偏差最小,阴天YSU方案模拟效果最好;(5)总体而言,在对典型农田下垫面进行模拟时,晴天和阴天条件下均是ACM2方案更具优势.  相似文献   

3.
MYJ和YSU方案对WRF边界层气象要素模拟的影响   总被引:20,自引:5,他引:15       下载免费PDF全文
研究新一代中尺度气象模式WRF中两种大气边界层方案(MYJ,YSU)对沈阳冬季大气边界层结构模拟的影响,重点分析温度层结、低层风场、边界层高度等对污染物扩散有重要影响的气象要素.和观测数据的比对表明WRF基本能够模拟出温度风速的日变化特征,但模拟风速偏大.YSU方案由于模拟的边界层顶卷挟和边界层内混合作用较强,夜间接地逆温强度低于MYJ方案,逆温维持时间比MYJ方案短4小时,同时模拟边界层高度也高于MYJ方案,有利于污染物垂直扩散.边界层高度的3种计算方法中,湍流动能方法计算的边界层高度最高,Richardson数方法次之,位温方法得到的高度最低.Richardson数方法对临界值的选取较敏感.  相似文献   

4.
本文利用中尺度数值模式WRF,分别采用YSU和MYJ两种边界层参数化方案对2010年超强台风Megi的移动路径进行了模拟,研究了热带气旋(TC)路径模拟对边界层方案的敏感性,并从模拟TC尺度差异所造成的影响角度揭示了模式边界层方案影响TC路径的机理.结果表明:由于两种方案对边界层垂直混合作用过程的描述不同,两个试验模拟的低层水汽垂直输送存在差异.相对于能很好模拟出Megi路径的MYJ方案,YSU方案模拟的TC外围螺旋雨带更活跃,造成TC尺度增大,引起TC中心北侧外围气压梯度和径向风速增加,使得由副高向TC中心输送更多的质量,造成副高异常减弱,从而导致由副高主导的引导气流发生改变,最终使得采用YSU方案模拟的Megi路径出现提前转向.  相似文献   

5.
青藏高原地-气过程动力、热力结构综合物理图象   总被引:40,自引:2,他引:40  
根据第二次青藏高原大气科学试验(TIPEX)3个边界层观测基地(改则、当雄。昌都)及相关的卫星、探空、地面等加密观测(IOP)资料,综合分析了青藏高原地-气物理过程及其动力学模型,揭示了高原边界层动力学特征和高原湍流运动规律;发现高原边界层低层风向、风速具有多层次变化特征,高原边界层对流混合层较为深厚,高原边界层大气密度远小于平原特征相联系的高原湍流运动“强浮力”效应。高原深厚边界层Ekman螺线及高原边界层动力“抽吸泵”效应。研究了高原近地层局地水汽静态分布状况和水汽的侧边界平流输送特征。分析了高原近地层与边界层异常热力结构,其中包括高原强辐射现象、高原中部地面强热源特征等。综合上述青藏高原近地层与行星边界层动力、热力结构特征,提出了描述高原边界层湍流与对流混合机制的综合物理图象。揭示了显著影响中国长江流域洪涝的青藏高原对流云团的生成、发展和移动的特征,给出与高原“爆米花”云系频发相关的湍流运动和对流泡动力、热力结构概念模型。  相似文献   

6.
对流边界层顶部特性的对流槽实验模拟研究   总被引:5,自引:1,他引:5  
利用对流槽研究对流边界层的顶部特性.实验结果表明,产生于混合层的上冲热泡可在对流边界层顶上的覆盖逆温层中激发出重力波;夹卷层的湍流结构表现出各向异性,水平尺度大于垂直尺度,与混合层中的湍流结构明显不同;利用可视图像直观显示了夹卷过程,夹卷层的温度谱表现出独特的结构特征,湍流能谱有明显的分区现象,谱幂率与现有理论分析结果有较大偏离.在实验结果的基础上,提出了关于夹卷速率的新参数化方案,夹卷速率可由地面热通量、混合层高度和覆盖逆温强度确定,方案中的系数C由实验测量数据拟合得出:C=0.95,与Deardroff等的对流槽实验数据的拟合结果(C=1.11)非常接近.  相似文献   

7.
大气边界层研究进展   总被引:1,自引:0,他引:1  
大气边界层对云和对流的发展、演变有重要作用.本文回顾了在大气边界层高度计算方法,边界层的时空分布特征、结构和发展机理,以及边界层参数化方案等方面的主要研究进展.大气边界层高度计算方法主要分为基于大气廓线观测数据计算和基于模式参数化方案计算两大类;大气边界层高度频率分布形态具有明显的日变化特征,并且稳定、中性和对流边界层...  相似文献   

8.
通过对青藏高原东南缘大理2008年3~8月大样本边界层铁塔观测系统超声和梯度资料、风廓线雷达和GPS探空资料的综合分析,研究发现高原东南缘湍能分量(湍流动能、切变项和浮力项)强弱依赖于下垫面植被的变化状况,且与局地稳定度特征及其动力、热力条件存在显著关系.近地层处于中性层结时,机械湍流较强,湍流动能主要贡献来源于切变项;当不稳定层结时大气湍流运动则以热力湍流为主,即浮力项较强,切变项较弱;在稳定层结时湍流发展呈间歇性特征,其中浮力项与切变项亦较弱,且湍流动能显著小于中性和不稳定状态.研究亦发现春季位于青藏高原大地形南坡的林芝站浮力项贡献显著大于高原大地形东南缘大理站,这反映了青藏高原南坡强对流活动过程中热力湍流的重要贡献,但位于高原东南缘山谷起伏、复杂地形区域的大理站近地层的机械湍流却显著大于高原南坡林芝站;从湍流-对流运动不同尺度相互作用视角,研究发现高原东南缘午时对流边界层CBL(Convective Boundary Layer)顶高可达1500~2500 m,边界层湍流动能、切变项、浮力项与对流边界层顶高、局地垂直运动均呈显著相关,且白天地面感热通量或浮力项的热力湍流作用对CBL发展高度亦有明显影响,而机械湍流的剪切作用影响却相对小;另外,近地层切变项机械湍流输送对垂直运动影响显著,尤其午前其对垂直运动影响高度可达2500~3000 m;春、夏季浮力项、切变项与垂直运动相关的日变化峰值均为大气层结显著不稳定阶段,尤其夏季层结不稳定背景下浮力项午后对垂直运动贡献显著.本文研究结论揭示出高原东南缘对流活动的湍能源驱动特征及其两者的相互作用.  相似文献   

9.
本文基于WRF-ARW(V4.0)中尺度数值模式,选用耦合同一近地层参数化方案(Eta)的五种边界层参数化方案(MYJ、MYNN2、MYNN3、BouLac、UW),对2020年5月1—2日海南岛一次典型山地环流个例进行模拟,对比分析了这五种方案所模拟的山地环流结构和湍流特征的差异,旨在为模式应用于山地环流研究和模式改进提供一定的科学依据.研究结果表明,这五种湍流动能边界层参数化方案均能模拟出山谷风特征,对环流结构和湍流特征的影响表现为谷风时段大于山风时段.对于山地环流水平结构的模拟,因平原风推进距离的不同,五种方案模拟的近地面风速差异可达4 m·s-1以上,其中MYJ方案模拟的谷风最强盛,而MYNN3方案最弱,山区多为静风或小风.对于山地环流垂直结构的模拟,MYNN2、UW方案模拟的谷风环流较强,表现为谷风厚度较厚,推进距离较远,同时由于模拟的谷风环流可越过山顶,从而模拟的高海拔地区上升区的覆盖范围和强度均较大;MYJ、BouLac方案模拟的谷风环流均未能越过山顶,且其中BouLac方案的平原风环流未能与上坡风环流耦合;而MYNN3方案模拟的环流结构最不明显.湍...  相似文献   

10.
近地层参数化对海南岛海风降水模拟的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用WRF模式探讨了两种近地层参数化方案(MM5方案和Eta方案)对2013年5月31日海南岛一次海风降水过程模拟的影响.结果表明,改变近地层方案可对当地的海风环流及相应的降水特征产生明显影响,两个试验最重要的差别主要体现在模拟的海风及降水的强度差异上,与MM5试验相比,Eta试验的低层海风及辐合程度更强,相应的降水也更强,表现为岛屿总格点降水量、大于10mm的降水区域、最大格点降水三个量化指标均比较大.通过分析两种方案在不同降水阶段的地表通量及近地层变量场,发现Eta试验模拟的降水前环境场更有利于对流的启动,随着午后热力湍流的不断增强,将MM5方案替换为Eta方案可使近地层感热通量、潜热通量分别增加约3.57%、5.65%,动量通量减小约10.79%,感热、潜热的增加使Eta试验中近地层大气的加热加湿作用更加明显,相应的低层大气不稳定度更高,再配合海风锋前较强的辐合上升运动,局地不稳定能量的释放变的更加容易,因此降水强度更大.  相似文献   

11.
The planetary boundary layer(PBL)scheme in the regional climate model(RCM)has a significant impact on the interactions and exchanges of moisture,momentum,and energy between land,ocean,and atmosphere;however,its uncertainty will cause large systematic biases of RCM.Based on the four different PBL schemes(YSU,ACM2,Boulac,and MYJ)in Weather Research and Forecasting(WRF)model,the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon(EASM)are investigated.The simulated results of the two local turbulent kinetic energy(TKE)schemes,Boulac and MYJ,are more consistent with the observations than those in the two nonlocal closure schemes,YSU and ACM2.The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high(WPSH)than the latter.As to the modeling of summer monsoon precipitation,both the spatial distributions and temporal evolutions from Boulac and MYJ are also better than those in YSU and ACM2 schemes.In addition,through the comparison between YSU and Boulac experiments,the differences from the results of EASM simulation are more obvious over the oceanic area.In the experiments with the nonlocal schemes YSU and ACM2,the boundary layer mixing processes are much stronger,which lead to produce more sea surface latent heat flux and enhanced convection,and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation.With the further study,it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean.Consequently,there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation,if an ocean model coupled into WRF.  相似文献   

12.
为克服针对一次或几次天气过程研究城市化对边界层结构及降水影响的局限性,尝试研究北京城市化对夏季大气边界层结构及降水的月平均影响,本文首先总结了2006年8月份的主要天气过程,分析了气象站观测的10 m高度风速、2 m高度气温、2 m高度比湿和24 h降水的月平均分布特征,然后利用WRF/Noah/UCM模拟系统,进行了该月30个个例的高分辨率数值模拟及检验分析,并通过多组不同城市化情景的敏感性试验对比分析了城市化对夏季大气边界层结构及降水的月平均影响.研究表明:本文所用对高分辨率数值模拟结果进行月平均的方法可以较合理地模拟出城市化对大气边界层结构及降水的影响,并再现观测到的各站风频差异.8月份,北京城市化对气温的影响高度白天约为800 m,近地面气温升高1℃以上;夜间约为200 m,对近地面气温的影响达到最大(1.4℃以上).白天,城市化使城市及下风向的一些区域风速略有减小;夜间,城市及周边区域200 m以下风速明显减小,且在100 m左右高度处风速减小最明显,减小达0.8 m/s以上.城市化白天使700 m以下比湿减小,近地面处减小达1.2g/kg以上,夜间使近地面空气比湿略有减小.城市化对城市区域平均降水量的影响随城市发展的不同阶段而不同.初步模拟分析表明, 北京城市化已使上风向区域以及城区三环以内降水量减少,海淀和昌平降水明显增加.  相似文献   

13.
利用中尺度气象数值模式(Weather Research and Forecasting Model,WRF)模拟风场,结合兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)湍流观测资料,分析了黄土高原复杂地形上稳定边界层低空急流对近地层湍流活动的影响.黄土高原复杂地形上稳定边界层低空急流的形成与地形作用引发的局地环流有关.低空急流对近地层湍流活动有强烈影响,剪切作用使小尺度湍涡活动加剧,湍动能增大,同时非平稳运动被压制.低空急流发生时,观测数据有87.3%是弱稳定情形(梯度理查森数小于0.25);而无低空急流时,对应时段的观测表明65.4%属于强稳定层结(梯度理查森数大于0.3),非平稳运动造成湍流功率谱在低频端迅速增大.与无低空急流和弱低空急流情形相比,强低空急流发生时,近地层湍动能增大1倍,湍动能在垂直方向上的传递增大1个量级,且方向向下,约为-3 × 10-3 m3·s-3,湍流在上层产生并向下传递.  相似文献   

14.
Gradient-based similarity in the atmospheric boundary layer   总被引:2,自引:0,他引:2  
The “flux-based” and “gradient-based” similarity in the stable boundary layer and also in the interfacial part of the convective boundary layer is discussed. The stable case is examined on the basis of data collected during the CASES-99 experiment. Its interfacial counterpart is considered in both the quasi-steady (mid-day) and non-steady states, utilizing the results of large-eddy simulations. In the stable regime, the “gradient-based” approach is not unique and can be based on various master length scales. Three local master length scales are considered: the local Monin-Obukhov scale, the buoyancy scale, and the Ellison scale. In the convective “quasi-steady” (mid-day) case, the “mixed layer” scaling is shown to be valid in the mixed layer and invalid in the interfacial layer. The temperature variance profile in non-steady conditions can be expressed in terms of the convective temperature scale in the mixed layer. The analogous prediction for velocity variances is not valid under non-steady conditions.  相似文献   

15.
为了修正中尺度气象模式WRF(Weather Research and Forecasting model)对低层风速模拟的系统性误差,有学者在新版本WRF模式的YSU(Yonsei University)边界层参数化方案中加入了两个地形订正方法:Jiménez方法和UW(University of Washington method)方法.本文利用这两个地形订正方法,选取了两个时间段,对北京地区的地面气象要素以及气象要素垂直廓线进行了个例模拟研究,模拟结果和观测数据的比对表明在北京地区:是否采用地形订正,对地面温度的模拟几乎没有影响;采用地形订正后,模式对地面风速的模拟有明显的改进,两种方法对风速模拟的差别主要体现在山/丘陵地区;Jiménez方法在山/丘陵地区的模拟风速明显偏大,而采用UW方法进行订正后,模拟的风速减小,更接近观测值;两种方法在山谷地区对风速均有一定的过度订正.通过分析气象要素的垂直廓线发现,不同地形订正方法主要影响的是2000m以下的低层风速.总体而言,UW地形订正方法在北京地区更为适用,采用UW方法后,模拟得到的地面气象要素的各项统计参数基本达到了统计基准值.  相似文献   

16.
The effect of the downstream propagation of a wake on the transport of momentum, energy and scalars (such as humidity) in the convective boundary layer (CBL) is studied using a direct numerical simulation. The incompressible Navier–Stokes and energy equations are integrated under neutral and unstable thermal stratification conditions in a rotating coordinate frame with the Ekman layer approximation. Wake effects are introduced by modifying the mean velocity field as an initial condition on a converged turbulent Ekman layer flow. With this initial velocity distribution, the governing equations are integrated in time to determine how turbulent transport in the CBL is affected by the wake. Through the use of Taylor’s hypothesis, temporal evolution of the flow field in a doubly periodic computational domain is transformed into a spatial evolution. The results clearly indicate an increase in the scalar flux at the surface for the neutrally stratified case. An increase in wall scalar and heat flux is also noted for the CBL under unstable stratification, though the effects are diminished given the enhanced buoyant mixing associated with the hot wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号