首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we determined fnax from near- field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of fmax derived from five different seismography stations are very close though these stations roughly span about 100 km along the strike. This implies that the cause offmax is mainly the seismic source process rather than the site effect. Moreover, according to the source-cause model of Papageorgiou and Aki (Bull Seism Soc Am 73:693-722, 1983), we infer that the cohesive zone width of the rupture of the Lushan earthquake is about 204 with an uncertainty of 13 m. We also find that there is a significant bulge between 30 and 45 Hz in the amplitude spectra of accel- erograms of stations 51YAL and 51QLY, and we confirm that it is due to seismic waves' reverberation of the sedi- mentary soil layer beneath these stations.  相似文献   

2.
本文介绍了一款位移触发远震警报器的制作方法与使用情况,由此提高了速报地震的报警率,有效减少了台站在地震速报中的晚报、漏报现象。  相似文献   

3.
On April 20, 2013, an earthquake with mag- nitude 7.0 occurred in the southwest of the Longmenshan fault system in and around Lushan County, Sichuan Province, China. This devastating earthquake killed hun- dreds of people, injured 10 thousand others, and collapsed countless buildings. In order to analyze the potential risk of this big earthquake, we calculate the co- and post-seismic surface deformation and gravity changes of this event. In this work, a multilayered crustal model is designed, and the elastic dislocation theory is utilized to calculate the co- and post-seismic deformations and gravity changes. During the process, a rupture model obtained by seismic waveform inversion (Liu et al. Sci China Earth Sci 56(7): 1187-1192, 2013) is applied. The time-dependent relaxation results show that the influences on Lushan and its surrounding areas caused by the Ms7.0 Lushan earthquake will last as long as 10 years. The maximum horizontal displacement, vertical uplift, and settlement are about 5 cm, 21.24 cm, and 0.16 m, respectively; the maximal positive and nega- tive values of gravity changes are 45 and -0.47 μGal, respectively. These results may be applied to evaluate the long-term potential risk caused by this earthquake and to provide necessary information for post-earthquake reconstruction.  相似文献   

4.
汶川8.0级特大地震汉源县震害特点与烈度异常成因探讨   总被引:1,自引:0,他引:1  
本文在汉源县地震灾害调查的基础上,通过收集前人在该区已取得的成果资料,采用综合分析、类比等方法,对汉源县地震烈度异常区震害及造成异常的原因进行了分析探讨。汉源县建筑物破坏形式以水平地震作用造成的“X”型剪切破坏为主,竖向地震造成的破坏较少。地震波传播路径、场地土层条件和地形地貌条件三者的耦合是造成汉源县烈度异常的主要原因,其中场地土层中占优势厚度的砾石层是造成场地地震波放大的主要内因。本文取得的初步结论为更加深入地科学研究本区地震烈度异常的原因提供了新思路。  相似文献   

5.
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.  相似文献   

6.
Centroid depth of earthquakes is essential for seismic hazard mitigation. But, various studies provided different solutions for the centroid depth of the damaging 2013 Lushan earthquake, thus hindering further studies of the earthquake processes. To resolve its centroid depth and assess the uncertainties, we apply the teleseismic cut and paste method to invert for centroid depth with teleseismic body waves in the epicentral distance of 300-90~. We performed the inversion for P waves only as well the case of both P and SH waves and found that both cases lead to depth solutions with difference less than 0.5 km. We also investigated the effects on depth inversion from azimuth gap of seismic stations, source duration, and comer fre- quency of filter. These various tests show that even azi- muthal distribution of seismic stations is helpful for accurate depth inversion. It is also found that estimate of centroid depth is sensitive to source duration. Moreover, the depth is biased to larger values when corner frequency of low-pass filter is very low. The uncertainty in the velocity model can also generate some error in the depth estimation (- 1.0 km).With all the above factors consid- ered, the centroid depth of Lushan earthquake is proposed to be around 12 km, with uncertainty about 2 km.  相似文献   

7.
Monitoring of subsurface fluid (underground fluid) is an important part of efforts for earthquake prediction in China. The nationwide network, which monitors groundwater level, water temperature, and radon and mercury in groundwater, has been constructed in the last decades. Large amounts of abnormal fluid changes before and after major earthquakes have been recorded, providing precious data for research in earthquake sciences. Many studies have been done in earthquake fluid hydrogeology in order to probe the nature of the earthquake. Much progress in earthquake fluid hydrogeology has been made in the last decades. The paper provides a review of the advances in research on earthquake fluid hydrogeology over the last 40 years in China. It deals with the following five aspects: (1) an introduction to the development history of monitoring networks construction; (2) cases of different subsurface fluid changes recorded before some major earthquakes which occurred in the last decades; (3) characteristics of subsurface fluid changes following major earthquakes; (4) mechanism of subsurface fluid changes before and following earthquakes; (5) application of earthquake fluids in the hydrogeology field.  相似文献   

8.
The correlation of the scaled energy,e = Es/ Mo, versus earthquake magnitude, Ms, is studied based on two models: (1) Model 1 based on the use of the time function of the average displacements, with a ω^-2 source spectrum, across a fault plane; and (2) Model 2 based on the use of the time function of the average displacements, with a ω^-3 source spectrum, across a fault plane. For the second model, there are two cases: (a) As ζ= T, where r is the rise time and T the rupture time, lg(e) - -Ms; and (b) As ζ 〈〈 T, lg(e)- -(1/2)Ms. The second model leads to a negative value of e. This means that Model 2 cannot work for studying the present problem. The results obtained from Model 1 suggest that the source model is a factor, yet not a unique one, in controlling the correlation of e versus Ms.  相似文献   

9.
The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Obser- vation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as -1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3-1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.  相似文献   

10.
We process the standard 30 s, static GPS data and the 1 s, high-rate GPS (HRGPS) data provided by the Crustal Movement Observation Network of China with GAMIT/GLOBK software package, and obtain the co- seismic displacements of near field and far field, and the epoch-by-epoch time series of HRGPS during Lushan earthquake. GPS data from about 20 sites in Sichuan province, which located between 40 and 450 km from the epicenter, are analyzed so as to study the characteristics of the static displacements and the dynamic crustal defor- mations, with periods ranging from several minutes to over a month. The result shows that: the static displacements caused by Lushan earthquake are limited to several centi- meters; the nearest station SCTQ at 43 km from the epi- center has the largest static displacement of about 2 cm, while the other stations generally have insignificant dis- placements of less than 5 mm. the stations in the east ofSichuan-Yunnan region shifts 5-10 mm toward the southwest, and the stations in the middle-west of Sichuan Basin moves indistinctively 1-2 mm toward the northwest; station SCTQ has the largest kinematic displacement of about 4 and 3 cm peak-to-peak on the north and east component, respectively, and is much greater than the static permanent displacement; for the stations located at a distance greater than 150 km from the epicenter, the kinematic motions are generally insignificant; exception- ally, station SCNC and station SCSN in central Sichuan Basin have significant kinematic motions although they are more than 200 km away from the epicenter.  相似文献   

11.
Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of the Yushu Ms7. 1 earthquake. Based on rectangular dislocation theory in an elastic-viscoelastic layered medium, we have simulated the co- seismic deformation and gravity change with gravitational effect considered. The pictures show that the absolute gravity measuring point is beside the extremum of coseismic gravity change, and the numerical value reaches 25.02 x 10-Sm. s-2. After a discussion about the gravity changes before the earthquake and the coherence consistency between two FG-5 absolute gravimeters, we think that the measured value 27.2 × 10^-8 m· s^-2 at Yushu station is coseismic gravity change. It's coincident with the simulation results based on dislocation theory. Therefore it is a good tool to test the near-field changes found by dislocation theory.  相似文献   

12.
1调查经过1933年8月25日大约在下午2时半,四川茂县之北叠溪,忽然发生大地震,即时间附近群山崩倒,叠溪城全部毁灭,岷江断流。叠溪周围30里内,属于强烈地震区,在这一范围内,任何房屋庐舍,全部破坏,群山崖壁,全部崩坍。在叠溪圆径百里之内,所有道路都被破坏,不能通行。邮电线路,全部不通。当时只知茂汶  相似文献   

13.
Abstract The 2008 Wenchuan earthquake, a major intraplate earthquake with Mw 7.9, occurred on the slowly deforming Longmenshan fault. To better understand the causes of this devastating earthquake, we need knowledge of the regional stress field and the underlying geodynamic processes. Here, we determine focal mechanism solutions (FMSs) of the 2008 Wenchuan earthquake sequence (WES) using both P-wave first-motion polarity data and SH/P amplitude ratio (AR) data. As P-wave polarities are more reliable information, they are given priority over SH/ PAR, the latter of which are used only when the former has loose constraint on the FMSs. We collect data from three categories: (1) permanent stations deployed by the China Earthquake Administration (CEA); (2) the Western Sichuan Passive Seismic Array (WSPSA) deployed by Institute of Geology, CEA; (3) global stations from Incorporated Research Institutions for Seismology. Finally, 129 events with magnitude over Ms 4.0 in the 2008 WES are identified to have well-constrained FMSs. Among them, 83 are well constrained by P-wave polarities only as shown by Cai et al. (Earthq Sci 24(1):115-125,2011), and the rest of which are newly constrained by incorporating SH/P AR. Based on the spatial distribution and FMSs of the WES, we draw following conclusions: (1) the principle compressional directions of most FMSs of the WES are subhorizontal, generally in agreement with the conclusion given by Cai et al. (2011) but with a few modifications that the compressional directions are WNW-ESE around Wenchuan and ENE-WSW around Qingchuan, respectively. The subhorizontal compressional direction along the Longmenshan fault from SW to NE seems to have a leftlateral rotation, which agrees well with regional stress field inverted by former researchers (e.g., Xu et al., Acta Seismol Sin 30(5), 1987; Acta Geophys Sin 32(6), 1989; Cui et al., Seismol Geol 27(2):234-242, 2005); (2) the FMSs of the events not only reflected the regional stress state of the Longmenshan region, but also were obviously controlled by the faults to some extent, which was pointed out by Cai et al. (2011) and Yi et al. (Chin J Geophys 55(4):1213-1227, 2012); (3) while the 2008 Wenchuan earthquake and some of its strong aftershocks released most of the elastic energy accumulated on the Longmen- shan fault, some other aftershocks seem to occur just for releasing the elastic energy promptly created by the 2008 Wenchuan earthquake and some of its strong aftershocks. (4) Our results further suggest that the Longmenshan fault from Wenchuan to Beichuan was nearly fully destroyed by the 2008 Wenchuan earthquake and accordingly propose that there is less probability for great earthquakes in the middle part of the Longmenshan fault in the near future, although there might be a barrier to the southwest of Wenchuan and it is needed to pay some attention on it in the near future.  相似文献   

14.
Both P- and S-wave arrivals were collected for imaging upper crustal structures in the source region of the April 20, 2013 Lushan earthquake. High-resolution, three- dimensional P and S velocity models were constructed by travel-time tomography. Moreover, more than 3700 after- shocks of the Lushan earthquake were relocated via a grid search method. The P- and S-wave velocity images of the upper crust show largely similar characters, with high and low velocity anomalies, which mark the presence of sig- nificant lateral and vertical heterogeneity at the source region of the Lushan earthquake. The characteristics of the velocity anomalies also reflect the associated surface geo- logical tectonics in this region. The distributions of high velocity anomalies of both P- and S-waves to 18 km depth are consistent with the distributions of relocated after- shocks, suggesting that most of the ruptures were localized inside the high velocity region. In contrast, low P and S velocities were found in the surrounding regions without aftershocks, especially in the region to the northeast of the Lushan earthquake. For the relocated aftershocks of the Lushan earthquake from this study, we found that mostaftershocks were concentrated in a zone of about 40 km long and 20 km wide, and were located in the hanging wall of Dayi-Mingshan fault. The focal depths of aftershocks increase from the southeast to the northwest region in the direction perpendicular to the fault strike, suggesting that the fault ruptured at an approximate dip angle of 45°. The main depths of the aftershocks in the northwest of the main shock are significantly shallower than expected, revealing the different seismogenic conditions in the source region.  相似文献   

15.
This paper introduces relative and absolute gravity change observations in the eastern portion of the Tibetan Plateau. We analyze and discuss a change that occurred in 2010 in the gravity along the eastern margin of the plateau and the relationship between this change and the 2013 Lushan Ms7.0 earthquake. Our results show that: (1) before the Lushan MsT.0 earthquake, gravity anomalies along the eastern margin of the Tibetan Plateau changed drastically. The Lushan earthquake occurred at the bend of the high gradient zone of gravity var- iation along the southern edge of the Longmenshan fault zone. (2) The 2013 Lushan earthquake occurred less than 100 km away from the epicenter of the 2008 Wenchuan earthquake. Lushan and Wenchuan are located at the center of a four- quadrant section with different gravity anomalies, which may suggest that restoration after the Wenchuan earthquake may have played a role in causing the Lushan earthquake. (3) A medium-term prediction based on changes in gravity anoma- lies was made before the Lushan Ms7.0 earthquake, in par- ticular, a prediction of epicenter location.  相似文献   

16.
Based on faults surveying and research data in the Tianjin offshore areas, through studying tectonic structure, Quaternary activity, deep structure, stress and strain fields and seismicity in the Tianjin offshore areas, the activity and tectonic features of the faults are determined synthetically. Using seismo-geological data, and the historical and modern seismicity data, the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude Mu and at/b, the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated. Then Poisson probability model is adopted and the quantitative parameters, such as the maximum magnitude, occurrence probability, recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50 - 200a, are calculated.  相似文献   

17.
The April 20, 2013 Lushan earthquake which occurred in Sichuan, China had only moderate thrust. However, the computed seismic moments (M0) for the Lushan earthquake calculated by several institutions differ significantly from 0.4 × 1019 to 1.69 ×019 Nm, up to four times difference. We evaluate ten computed Mos by using normal mode observations from superconducting gravimeters in Mainland China. We compute synthetic normal modes on the basis of moment tensor solutions and fit them to the observed normal modes. Comparison of our results indicates that Mo is the main cause for some large differences between observations and synthetics. We sug- gest that a moment magnitude of Mw6.6, corresponding to a Mo of 0.97-1.08 × 1019 Nm, characterizes the size and strength of the seismic source of the Lushan earthquake.  相似文献   

18.
李惠森 《高原地震》2009,21(4):61-63
0前言 地震安全,事关人民群众生命财产安全和经济社会可持续发展。随着社会的发展和国家实力的增强,国家已把地震安全作为社会公共安全的重要组成部分,惨烈的2008年汶川大地震,更把地震安全推到了众人关注的地位。采取各种有效措施,最大限度地减轻地震灾害损失,已成为各级人民政府义不容辞的职责。  相似文献   

19.
Using a time series method that combines both the persistent scatterer and small baseline approaches, we analyzed 9 scenes Envisat ASAR data over the L'Aquila earthquake, and obtained a Shocke's displacement field and its evolution processes. The results show that: (1) Envisat ASAR clearly detected the whole processes of displacement field of the L'Aquila earthquake, and distinct variations at different stages of the displacement field. (2) Preseismic creep displacement → displacement mutation when faulting → constantly slowed down after the earthquake. (3) The area of the strongest deformation and ground rupture was a low-lying oval depression region to the southeast. Surface faulting within a zone of about 22 km× 14 km, with an orientation of 135°, occurred along the NW-striking and SW-dipping Paganica-S. Demetrio normal fault. (4) In analyzing an area of about 54 km x 59 km, bounded by north-south axis to the epicenter, the displacement field has significant characteristics of a watershed: westward of the epicenter shows uplift with maximum of 130 mm in line-of-sight (LOS), and east of the epicenter was a region with 220 mm of maximum subsidence in the LOS, concentrating on the rupture zone, the majority of which formed in the course of faulting and subsequence.  相似文献   

20.
We obtained a catalog of early aftershocks of the 2013 Lushan earthquake by examining waveform from a nearby station MDS which is 30.2 km far away from the epicenter, and then we analyzed the relation between aftershock rate and time. We used time-window ratio method to identify aftershocks from continuous waveform data and compare the result with the catalog provided by China Earthquake Networks Center (CENC). As expected, a significant amount of earthquakes is missing in CENC catalog in the 24 h after the main shock. Moreover, we observed a steady seismicity rate of aftershocks nearly in the first 10,000 s before an obvious power-law decay of aftershock activity. We consider this distinct early stage which does not fit the Omori law with a constant p (p - 1) value as early aftershock deficiency (EAD), as proposed by previous studies. Our study suggests that the main shock rupture process is different from aftershocks' processes, and EAD can vary in different cases as compared to earthquakes of strike-slip mechanism in California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号