首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   

2.
3.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

4.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

5.
We present a model for empirically reproducing line profiles of molecular hydrogen emission in bow shocks. The model takes into account bow velocity, dissociation limit, a cooling function, viewing angle, bow shape and a limited form of extinction. Our results show that both geometrical factors and shock physics can significantly affect the profile morphology. In a companion paper we will apply this model to Fabry–Perot observations of bow shocks in the Orion BN–KL outflow.  相似文献   

6.
7.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

8.
We have computed the time dependence of the H2 rovibrational emission spectrum from molecular outflows. This emission arises in shock waves generated by the impact of jets, associated with low-mass star formation, on molecular gas. The shocks are unlikely to have attained a state of equilibrium, and so their structure will exhibit both C- and J-type characteristics. The rotational excitation diagram is found to provide a measure of the age of the shock; in the case of the outflow observed in Cepheus A West by the ISO satellite, the shock age is found to be approximately 1.5×103 yr. Emission by other species, such as NH3 and SiO, is also considered, as are the intensities of the fine-structure transitions of atoms and ions.  相似文献   

9.
10.
The Cepheus A star-forming region has been investigated through a multiline H2S and SO2 survey at millimetre wavelengths. Large-scale maps and high-resolution line profiles reveal the occurrence of several outflows. Cep A East is associated with multiple mass-loss processes: in particular, we detect a 0.6-pc jet-like structure which shows for the first time that the Cep A East young stellar objects are driving a collimated outflow moving towards the south.
The observed outflows show different clumps associated with definitely different H2S/SO2 integrated emission ratios, indicating that the gas chemistry in Cepheus A has been altered by the passage of shocks. H2S appears to be more abundant than SO2 in high-velocity clumps, in agreement with chemical models. However, we also find quite small H2S linewidths, suggestive of regions where the evaporated H2S molecules had enough time to slow down but not to freeze out on to dust grains. Finally, comparison between the line profiles indicates that the excitation conditions increase with the velocity, as expected for a propagation of collimated bow shocks.  相似文献   

11.
12.
13.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

14.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

15.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

16.
We present new, high-resolution, near-infrared images of the HH 1 jet and bow shock. H2 and [Fe  ii ] images are combined to trace excitation changes along the jet and across the many shock features in this flow. Echelle spectra of H2 profiles towards a few locations in HH 1 are also discussed. Gas excitation in oblique, planar C-type shocks best explains the observations, although J-type shocks must be responsible for the observed [Fe  ii ] emission features. Clearly, no single shock model can account for all of the observations. This will probably be true of most, if not all, Herbig–Haro flows.  相似文献   

17.
We present high spatial resolution (∼0.8 arcsec) diffraction-limited 12.8-μm Ne  ii fine-structure emission line and 12.5-μm continuum images of the bright southern compact H  ii region G333.6–0.2, taken with the mid-infrared imaging polarimeter NIMPOL. The two images show remarkably similar, compact, yet asymmetric, flux distributions. The [Ne  ii ] image shows a complex structure near the ionizing source(s) which we interpret in terms of the ionization structure of the H  ii region. It is found that G333.6–0.2 is more likely to be excited by a cluster of O and B stars than by a single star.  相似文献   

18.
The results of B -band CCD imaging linear polarimetry obtained for stars from the Hipparcos catalogue are used to re-examine the distribution of the local interstellar medium towards the IRAS 100-μm emission void in the Lupus dark clouds. The analysis of the obtained parallax–polarization diagram assigns to the dark cloud Lupus 1 a distance between 130 and 150 pc and assures the existence of a low column density region coincident with the observed infrared void. Moreover, there are clear indications of the existence of absorbing material at distances closer than 60–100 pc, which may be associated with the interface boundary between the Local Bubble and its neighbourhood Loop I superbubble.  相似文献   

19.
We have obtained an H2 v =1–0 S(1) image of a merging galaxy system, NGC 6090, by using a Fabry–Perot imager. The H2 emission originates between the double nuclei of pre-merger galaxies, and exhibits an arc-like or ring-like structure almost connecting the double nuclei. This structure is similar to that suggested for Arp 220 from the velocity field measured by CO radio emission. The separation of the double nuclei in NGC 6090 is 5–6 arcsec, corresponding to a projected distance of 3–4 kpc. This is much larger than that of Arp 220 and suggests that the molecular gas distribution can form an organized shape between the nuclei, such as a ring, in a rather early phase of merging.  相似文献   

20.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号