共查询到20条相似文献,搜索用时 0 毫秒
1.
实现全国连续空间覆盖未来小时尺度的PM2.5浓度实时、高精度预报是一个难题。本文建立基于深度学习的多层长短期记忆迭代模型和改进的空间反向传播神经网络S-BPNN模型来实现全国小时尺度PM2.5浓度的空间预报。首先,研究基于空间相关性将全国1286个空气质量监测站点在空间上进行自适应分区,并对各个分区分别构建多层LSTM迭代预报模型实现未来24 h各个监测站点的PM2.5浓度的实时预报。其次,应用改进的S-BPNN空间化模型实现未来24 h全国连续空间覆盖的PM2.5浓度精细化制图。然后,利用2016—2019年中国PM2.5监测站的历史数据进行训练和验证,结果显示预报模型和空间化模型的相关系数R2分别为0.88和0.87,表明模型都能实现较高的精度。最后,基于提出的预报模型和空间化模型,辅助从监测站实时获取的大气污染数据和气象数据,通过搭建的大气污染物浓度预报智能化在线信息原型系统可实时发布预报结果并可进行空间化展示。研究实现了全国连续空间覆盖的PM2.5浓度高时空精度的实时预测,以支持大气污染联防联控和公众环境空间质量信息服务。 相似文献
2.
3.
4.
5.
PM2.5导致大气能见度下降,造成雾霾天气.本文基于2016年四川省89个空气质量监测站的PM2.5数据,对2016年四川省PM2.5浓度时空分布特征进行研究分析.结果表明,2016年四川省PM2.5浓度空间分布呈现出西北部PM2.5浓度较低、空气质量较好,东南部PM2.5浓度较高、空气质量较差的趋势;时间分布呈现夏季PM2.5浓度较低、空气质量较好,冬季PM2.5浓度较高、空气质量较差的趋势,从而得出四川省PM2.5浓度时间和空间分布规律及分布图. 相似文献
6.
针对PM2.5浓度预测中传统机器学习算法无法对数据内部隐藏特征进行深层次挖掘,而深度学习算法在数据较少情况下效果不佳的问题,综合考虑深度学习与随机森林的特点,提出一种基于深度学习与随机森林的PM2.5浓度预测组合模型。模型以气溶胶光学厚度(AOD)遥感数据、气象再分析数据和PM2.5地面观测数据构建训练数据集,通过深度学习方法对训练数据内部深层次隐含特征进行提取,将提取得到的隐含特征用于随机森林模型训练,并使用随机森林回归算法得到PM2.5浓度的预测值。为验证方法的有效性,以河南省区域2018年—2019年的PM2.5浓度估算为例,将原始特征与利用CNN、LSTM和CNN_LSTM所提取特征共同构建的新特征分别通过随机森林回归、支持向量回归以及K近邻回归等3种传统机器学习方法进行训练和预测。实验结果表明,在较少数据情况下PMCOM模型无论是在整体预测还是在分季节预测场景下均具有较好的预测精度,其中以LSTM为特征选择器,RF为回归器的组合模型是本实验的最优模型,在即使只有35%... 相似文献
7.
针对当前我国重污染天气实时的空气质量预报问题,该文提出了一种基于长短期记忆神经网络的PM2.5浓度实时预报方法。此方法结合了北京市地面空气质量监测数据、天气预报模式的气象预报数据及东亚地区污染物排放清单进行分析,在将高层大气状态及排放状况融入了预报模型的同时,利用LSTM模型模拟区域PM2.5浓度的时序连续变化特征,建立了0~72h的区域PM2.5浓度实时预报模型。实验证明,该方法可以有效表征大气污染物变化的时序特征,从而进行更为精准的长时PM2.5浓度预报。同时,使用门限重复单元作为LSTM神经网络的核心,在保障模型精度的同时,进一步减少了模型训练时间,提高了模型的计算效率。 相似文献
8.
9.
一种协同时空地理加权回归PM2.5浓度估算方法 总被引:1,自引:1,他引:1
针对PM2.5浓度估算中时空特征考虑不足和样本量较少的问题,该文将协同训练和时空地理加权回归相结合,提出了协同时空地理加权回归。采用两个不同参数的时空地理加权回归模型作为回归器,利用一个回归器训练另一个回归器的未标注样本,选择最优结果作为标注样本加入标注样本,通过不断学习扩大标注样本量提升模型的回归性能。以京津冀地区2015年3-7月的PM2.5浓度数据为实验数据,利用气溶胶光学厚度产品、温度、风速和相对湿度进行建模,采用不同核函数的时空地理加权回归作为对比方法进行实验。结果显示,协同时空地理加权回归性能比基于Gauss核函数时空地理加权回归提升了10%,比基于bi-square核函数时空地理加权回归提升了6.25%,证明该文方法能够提升时空样本数量不足时的PM2.5浓度估算精度。 相似文献
10.
以京津冀地区为研究对象,结合地理国情数据开展PM_(2.5)浓度估算方法的研究,在相关因素分析的基础上,运用土地利用回归方法与地理加权回归方法建立PM_(2.5)浓度空间分布回归模型,采用十折交叉验证对比模型稳定性与拟合精度,探索研究区最优建模方法及PM_(2.5)重要影响因子。结果表明:从模型稳定性及拟合精度来看,地理加权回归模型优于土地利用回归模型,模型调整后的R2分别为0.85、0.832,平均相对误差为12.4%、13.8%,均方根误差为10.61μg/m3、11.94μg/m3。相关分析判定结果表明,京津冀地区PM_(2.5)浓度的影响因子主要为气温、气压、房屋建筑、林地、耕地、降水、污染企业等。 相似文献
11.
基于稀疏监测点的监测数据无法直接获取城市内部空气污染的高分辨率空间分布。以武汉市为例,研究了基于土地利用回归(landuseregression,LUR)模型的大气PM2.5浓度高分辨率空间分布模拟。采用双变量相关分析识别出与PM2.5浓度相关性最高的4个影响因子,分别是1000m缓冲区内道路长度,500m缓冲区内水域面积,500m缓冲区内建设用地面积以及工业污染影响。采用PM2.5月平均浓度和识别出的影响因子连同气象条件(月平均温度和月降水量)进行多元线性回归分析,相关系数R2达到0.905,调整后的R2为0.885。在研究区建立均匀格网(2km×2km),利用得到的LUR方程计算格点PM2.5浓度值,应用空间插值制成武汉市主城区夏季PM2.5浓度空间分布模拟图。模拟结果显示,主城区有三个PM2.5浓度高值中心,分别为青山工业区、江北工业区和汉口汉西建材市场区域。汉阳南部、武昌南部的大型湖泊和水域面积比例较大的区域表现为两个PM2.5浓度低值中心。 相似文献
12.
多基站协同训练神经网络的PM2.5预测模型 总被引:1,自引:0,他引:1
针对通过数值方法对PM2.5进行预测已经取得了良好的效果,但相关模型重视时间影响因子而对空间影响因素的关联性考虑不足的问题,该文提出了多基站协同训练长短时记忆网络预测模型。该模型以时空数据作为输入,并将多个基站数据进行协同训练。MC-LSTM网络通过采用多基站共享参数的方式,减少了需要训练的网络复杂度,减轻了网络过拟合的风险。利用MC-LSTM网络对北京市21个监测基站数据进行了处理,结果表明:MC-LSTM网络能够同时对各个基站的PM2.5浓度进行预测。 相似文献
13.
针对地理加权回归(GWR)模型无法克服小样本数据下异常值影响的问题,该文利用贝叶斯地理加权回归(BGWR)模型对北京地区2016年10月1日至12月29日长达90d的PM2.5监测数据进行了浓度模拟。该方法通过加入贝叶斯先验信息,选取不同的平滑函数,在局部空间样本稀少的情况下,有效降低了异常值和"弱数据"对回归结果的影响,更加真实地反映了PM2.5浓度空间分布。实验结果表明,基于不同平滑函数的3种BGWR模型校正决定系数分别达到了0.799、0.801和0.867。平均比GWR模型提升了28%,比OLS模型提升了32%,证实了BGWR模型在模拟PM2.5浓度分布时具有更好的适用性。 相似文献
14.
15.
杭州地区2015年PM2.5浓度时空变化特征分析 总被引:1,自引:0,他引:1
在2015年杭州地区11个地面观测站PM2.5质量浓度监测数据的基础上,结合MOD04_3K AOT产品,建立了利用AOT反演近地面PM2.5质量浓度的模型.利用实测和遥感反演数据共同分析了杭州市PM2.5质量浓度时空变化特征.分析结果表明,PM2.5质量浓度分布的日变化特征为:在杭州市中心城区,冬季、春季及秋季都存在典型的双峰变化,冬季、春季的峰值出现在9:00-12:00,秋季峰值出现在6:00-9:00;夏季表现出夜间浓度高于白天的特征.PM2.5质量浓度分布的季节性变化特征为:冬季>春季>秋季>夏季.PM2.5质量浓度的空间分布格局为:杭州地区东北区域的浓度明显高于其他区域;杭州—富阳—桐庐沿线、杭州—临安沿线PM2.5质量浓度存在高浓度的分布条带,PM2.5质量浓度的空间分布与城镇化的格局相似.PM2.5质量浓度空间分布与地形和植被指数呈负相关,春季地形和植被指数对PM2.5浓度分布的抑制影响最大. 相似文献
16.
基于2015—2016年东北三省36个主要城市PM2.5浓度数据以及同期大气氧化物数据,运用克里金插值法及相关性分析法,对PM2.5的时空分布特征及与其他大气氧化物的相关性进行分析.结果表明:2016年较2015年PM2.5浓度显著降低,下降了17.83%;PM2.5浓度由高到低的季节依次是冬季、秋季、春季和夏季,浓度分别为64.31、49.44、39.57、28.09μg·m-3;PM2.5月均浓度呈U形分布,最大值出现在11月,最小值出现在8月.分地区来看,PM2.5空间分布整体呈南高北低状态,黑龙江省的年均PM2.5浓度明显低于另外两省.PM2.5与CO、SO2、NO2浓度均为极显著正相关,表明CO、SO2、NO2对PM2.5浓度有显著影响. 相似文献
17.
针对京津冀地区多年来重工业较多、结构性污染突出等问题,该文充分利用多期扬尘地表和工业企业污染源、交通网络、地理国情地表覆盖数据、气象和地形数据,结合MODIS AOD产品和环境监测数据,采用主成分分析和最佳子集回归方法优选预测变量,构建估算PM2.5和PM10浓度的地理加权回归模型,实现京津冀地区2013、2015和2017年PM2.5/PM10年均浓度空间分布模拟制图,分析PM2.5/PM10年均浓度时空分布。实验结果表明,PM2.5和PM10浓度估算模型的决定系数R2分别为0.76和0.86,平均相对预测误差分别为10.87%和13.54%。 相似文献
18.
针对PM2.5质量浓度空间分布的季节性差异与土地利用分布的定量关系问题,该文以浙江省杭州市为实验区,收集PM2.5质量浓度实测数据和MODIS气溶胶光学厚度(AOT)遥感数据,并对AOT进行标高订正和水汽校正,建立了PM2.5质量浓度和AOT的回归模型,通过模型得出了杭州市各季节的PM2.5质量浓度空间分布图;在此基础上,进一步分析了杭州市PM2.5浓度与土地利用类型(扬尘地表与非扬尘地表)之间的空间分布相关性。结果表明,杭州市2015年PM2.5质量浓度分布的季节性变化特征是冬季春季秋季夏季;建设用地和交通用地等扬尘地表对PM2.5的浓度贡献较大,特别是在冬季和春季两个季节。该研究结果对于认识空气中PM2.5的来源与时空分布特征具有一定的理论和实践意义。 相似文献
19.
金洪芳 《测绘与空间地理信息》2016,(8):133-136
PM 2.5已经日渐成为大气中首要的污染物。同时越来越多的研究表明,PM 2.5污染对人们的正常生活会造成严重的影响,有效监测其空间分布对污染防治和健康影响等具有重要意义。利用遥感技术开展PM 2.5监测已经成为重要且有效的手段,遥感影像的空间分辨率不断提高、PM 2.5遥感反演模型的推陈出新,进一步助推和加深了遥感技术在PM 2.5监测领域中的应用。本文通过归纳总结用于PM 2.5反演的主要遥感数据源,并结合PM 2.5遥感反演模型的基本原理,从不同数据源角度综述了PM 2.5遥感监测技术的研究进展,最后展望了现有监测技术存在的问题以及发展趋势,为开展PM 2.5遥感监测和深化应用提供理论支撑。 相似文献