首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

2.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

3.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

4.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

5.
《Continental Shelf Research》2007,27(10-11):1399-1407
The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical–biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12 kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS.  相似文献   

6.
《Marine pollution bulletin》2014,83(1-2):155-166
Recently compiled databases facilitated estimation of basin-wide benthic organic biomass and turnover in the Strait of Georgia, an inland sea off western Canada. Basin-wide organic biomass was estimated at 43.1 × 106 kg C and production was 54.6 × 106 kg C yr−1, resulting in organic biomass turnover (P/B) of 1.27 × yr−1. Organic biomass and production for sub-regions were predictable from modified organic flux (r2 > 0.9). P/B declined significantly with increasing modified organic flux, suggesting greater biomass storage in high flux sediments. Biomass and production were highest, and P/B lowest near the Fraser River. Annual basin-wide benthic production was 60% of previously estimated oxidized organic flux to substrates, which agrees with proportional measurements from a recent, localized study.Deviations from expected patterns related to organic enrichment and other stressors are discussed, as are potential impacts to benthic biomass and production, of declining bottom oxygen, increasing bottom temperature and potential changes in riverine input.  相似文献   

7.
Our study summarizes data from six small water reservoirs in West Slovakia and analyzes the occurrence of zooplankton groups in relation to physico-chemical and catchment variables. The reservoirs are in two different catchments – of the Morava and Váh rivers. A total of 103 species were identified; 64 crustaceans (in both the pelagic and littoral zones) and 39 planktonic Rotifera in the pelagic zones. Significant differences were observed in species richness, abundance and biomass of planktonic crustaceans: 48 species were characteristic of the Váh catchment, while 53 were found in the Morava catchment. The density of zooplankton in the three reservoirs of the Váh River catchment ranged from 102 ind L?1 to 21,488 ind L?1 and the zooplankton biomass ranged from 0.12 mg L?1 to 103.29 mg L?1. The density of zooplankton in three Morava River catchment reservoirs ranged from 2 ind L?1 to 3928 ind L?1 and the zooplankton biomass ranged from 0.1 mg L?1 to 27.3 mg L?1. The differences were found to be related to catchment (altitude and catchment affiliation), chemical (BOD5, DO) and biological (Chromophyta, Chlorophyta) factors. Eutrophication of reservoirs in the Váh catchment was mainly due to agriculture and fish management, resulting in high nutrient concentrations. Species richness showed an unimodal response to BOD5 and N-NH4 with near optimum low values, 4.6 and 0.19 respectively. The relationship to oxygen content reflects preferences for less eutrophic waters and species richness tended to decrease with increasing DO and to decrease with increasing nutrient content.  相似文献   

8.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

9.
《Marine pollution bulletin》2013,66(10-12):478-489
Atoll lagoons display a high diversity of trophic states due mainly to their specific geomorphology, and probably to their level and mode of human exploitation. We investigated the functioning of the Ahe atoll lagoon, utilized for pearl oyster farming, through estimations of photosynthetic parameters (pulse amplitude modulation fluorometry) and primary production (13C incorporation) measurements of the size structured phytoplankton biomass (<2 μm and >2 μm). Spatial and temporal scales of variability were surveyed during four seasons, over 16 months, at four sites within the lagoon. While primary production (P) was dominated by the picophytoplankton, its biomass specific primary productivity (PB) was lower than in other atoll lagoons. The variables size fraction of the phytoplankton, water temperature, season, the interaction term station * fraction and site, explained significantly the variance of the data set using redundancy analysis. No significant trends over depth were observed in the range of 0–20 m. A clear spatial pattern was found which was persistent over the seasons: south and north sites were different from the two central stations for most of the measured variables. This pattern could possibly be explained by the existence of water cells showing different water residence time within the lagoon. Photoacclimation strategies of the two size fractions differed through their light saturation coefficient (higher for picophytoplankton), but not through their maximum photosynthetic capacity (ETRmax). Positive linear relationships between photosynthetic parameters indicated that their dynamic was independent of light availability in this ecosystem, but most probably dependent on nutrient availability and/or rapid changes in the community structure. Spatial and temporal patterns of the measured processes are then further discussed in the context of nutrient availability and the possible role of cultured oysters in nutrient recycling.  相似文献   

10.
《Marine pollution bulletin》2012,65(12):2860-2866
Phytoplankton monitoring has extended to practically all the regions of the European coast due to the implementation of the European Water Framework Directive. In this way, the study of phytoplankton taxonomic composition and dynamic is being performed in many areas poorly studied or not studied before. During the last years, a monitoring programme has been carried out at the coast of Cantabria region (SE Bay of Biscay); the presence of some potentially toxic and bloom forming species (>7.5 × 105 cells per litre) has been observed. Diatoms and cryptophytes are the main blooming taxa in this region in the majority of the estuaries and in some of the coastal sites. All estuaries and coastal stations showed at least one potentially toxic species, being the dinoflagellates the group with the highest number of taxa observed. The potentially toxic species found in highest concentrations were the genera Pseudo-nitzschia and Chrysochromulina.  相似文献   

11.
《Marine pollution bulletin》2014,81(1-2):234-244
Dissolved inorganic nitrogen (DIN), phosphate (PO4) and silicic acid (Si(OH)4) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO4, in contrast to the Mafragh estuary’s near-pristine inputs; Si(OH)4 levels were low in both estuaries. The DIN:PO4 molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si–Si(OH)4 (400–540 kg Si km2 yr1) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km2 yr1). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched.  相似文献   

12.
Contamination with As, Cd and Hg, their spatial and temporal distribution are reported from the coastal wetland sediments of the northern Beibu Gulf, South China Sea. The content of As, Cd, Hg and TOC in surface sediments is 8.1 ± 5.8 μg g?1, 0.08 ± 0.14 μg g?1, 0.034 ± 0.028 μg g?1 and 0.45 ± 0.39%, respectively. The mean sedimentation rates are 0.93–1.37 cm year?1 during 1920s to 2008 determined by 210Pb and 137Cs dating in three cores. The vertical profiles of As, Cd and Hg content in the cores retrieved from Qin and Nanliu River estuaries show increasing trends during 1985–2008 due to anthropogenic impact caused by local economic development. Locally the surface sediments have potential ecological risk of As to benthos according to the NOAA sediment quality guidelines.  相似文献   

13.
The distributions of 41 polychlorinated biphenyls (PCBs) were determined in the aqueous phase, suspended particulate matter (SPM), and sediment of the Daliao River estuary in Liaodong Bay, Bohai Sea (China). The total PCB concentrations ranged from 5.51 to 40.28 ng L−1 in the surface water, from 6.78 to 66.55 ng L−1 dry weight in the SPM, and from 0.83 to 7.29 ng g−1 dry weight in the sediment. The PCB concentrations in water, SPM, and sediment were moderate relative to those reported for other estuary and marine systems around the world. Sedimentary PCB concentrations decreased offshore due to the active deposition of laterally transported river-borne particles. The predominance of the highly chlorinated congeners for the water, SPM, and sediment samples are an indication of either a lack of degradation or the presence of nearby or recent releases into the environment.  相似文献   

14.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.  相似文献   

15.
《Marine pollution bulletin》2014,85(1-2):391-400
A comparative study of 23 PAH congeners in sediment of the Caspian Sea coast and Anzali Wetland was conducted in 2010. Surface sediment was analyzed using chromatography and mass spectrometry. Total PAH concentrations ranged between 212 and 9009 ng g1 dw. Spatial distribution maps revealed that PAH levels were higher in the coastal areas of the Caspian Sea where oil related activities have been common since 1800’s. Diagnostic ratios analysis indicated that PAHs largely originated from petrogenic processes. PAH toxicity level was assessed using sediment quality guidelines and toxic equivalent concentrations to determine toxic effects on marine organism. Based on these investigations, in our study areas, the probability of toxicity for benthic organisms is “low to medium”. The toxic equivalent concentrations of carcinogenic PAHs varied between 11 and 231 ng TEQ/g; higher total toxic equivalent concentrations values were found in the coastal areas of the Caspian Sea.  相似文献   

16.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

17.
Jan Herrmann 《Limnologica》2012,42(4):299-309
A manmade stormwater wetland in Kalmar, SE Sweden, sized 1 ha and receiving water from residential and road areas, was monitored over the first years after inundation with respect to chemistry and biology. Water flow and chemistry was analysed in years 2–4, mainly on a monthly basis, but, in the final year, every second month. This revealed that total nitrogen, according to the Swedish Environmental Quality Criteria (EQC), typically showed moderate or high concentrations, whereas total phosphorous levels were very high or extremely high. Metal (Cd, Cr, Cu, Pb and Zn) concentrations were low or moderate in terms of EQC. Yearly average reduction of nitrogen was 173 kg ha?1 y?1, tending to increase over time, and for phosphorous 12.1 kg ha?1 y?1, tending to decrease. Vegetation analysis was performed in years 1–4 by noting all species in 27 consecutive zones around the wetland system. This showed that one year after filling with water, the vegetation was already well established with >30 plant species in the entire pond system, and this increased only slightly. After four years, the shoreline vegetation cover had become denser, especially with larger graminoids such as common reed (Phragmites australis) and sea club-rush (Bolboschoenus maritimus), and submersed vegetation almost disappeared. There was a tendency for common species to become more dominant, and for less common species to become rarer. Using sweep net sampling of benthic invertebrates during years 0–2, ca 50 species/higher taxa were observed during the first year, largely because of the appearance of many beetles, especially dytiscids. However, these decreased the following years. Apart from these animals, in the first few months the invertebrate colonisation was dominated by chironomids and corixids, whereas later prominent increases were noticed for the isopod Asellus aquaticus, the snail Physa fontinalis, and the mayfly nymph Cloeon dipterum. The results are discussed in terms of wetland values for biodiversity and nutrient reduction, suggesting that these objectives seem possible to combine in stormwater wetlands.  相似文献   

18.
《Continental Shelf Research》2005,25(9):1081-1095
The mesoscale distribution and seasonal variation of the size structure of phytoplankton biomass, as measured by chlorophyll a (chl a), was studied in the Ebro shelf area (NW Mediterranean) during three different seasons: autumn, winter and summer. In autumn and summer, when the water column was, respectively, slightly or strongly stratified and nutrient concentrations were low at surface, average total chl a values were 0.31 and 0.29 mg m−3, respectively. In winter, the intrusion of nutrients into the photic zone by intense vertical mixing and strong riverine inputs, produced an increase of the total autotrophic biomass (0.76 mg m−3). In the three seasons, the main contributor to total chl a was the picoplanktonic (<2 μm) size fraction (42% in winter and around 60% in autumn and summer). The nanophytoplankton (2–20 μm) contribution to total chl a showed the lowest variability amongst seasons (between 29% and 39%). The microplanktonic (>20 μm) chl a size fraction was higher in winter (27%) than in the other seasons (less than 13%). The maximum total chl a concentrations were found at surface in winter, at depths of 40 m in autumn and between 50 and 80 m in summer. The relative contribution of the <2 μm size fraction at these levels of the water column tended to be higher than at other depths in autumn and winter and lower in summer. In autumn and winter, nutrient inputs from Ebro river discharge and mixing processes resulted in an increase on the >2 μm contribution to total chl a in the coastal zone near the Ebro Delta area. In summer, the contribution of the <2 and >2 μm chl a size fractions was homogeneously distributed through the sampling area. In autumn and summer, when deep chl a maxima were observed, the total amount of the autotrophic biomass in the superficial waters (down to 10 m) of most offshore stations was less than 10% of the whole integrated chl a (down to 100 m or to the bottom). In winter, this percentage increased until 20% or 40%. The >2 μm chl a increased linearly with total chl a values. However, the <2 μm chl a showed a similar linear relationship only at total chl a values lower than 1 mg m−3 (in autumn and summer) or 2 mg m−3 (winter). At higher values of total chl a, the contribution of the <2 μm size fraction remained below an upper limit of roughly 0.5 mg m−3. Our results indicate that the picoplankton fraction of phytoplankton may show higher seasonal and mesoscale variability than is usually acknowledged.  相似文献   

19.
The spatial pattern and seasonal variation of denitrification were investigated during 2010–2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N2 was directly measured by changes in the N2:Ar ratio. The results showed that excess dissolved N2 ranged from ?9.9 to 76.4 μmol L?1. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water–air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N2 observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (Ed = 12% of [DIN]; annual N removal = 24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.  相似文献   

20.
Two research cruises (CIMAR 13 Fiordos) were conducted in the N–S oriented macrobasin of the Moraleda Channel (42–47°S), which includes the E–W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July–7 August 2007) and spring (2–12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord.Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21–14 μM) and primary production was low (153–310 mgC m?2 d?1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N–S gradient, which was the highest (5167 mgC m?2 d?1) in the north microbasin and the lowest (742 mgC m?2 d?1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (~800 mgC m?2 d?1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m?2 d?1).At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the recognizable particles contributing to the particulate organic carbon flux.The topographic constriction sills partially modulated the exchange of oceanic waters (Subantarctic Surface Water) with freshwater river discharges along the Moraleda Channel. This exchange affects salinity and nutrient availability and, thus, the plankton structure. The north microbasin was dominated by a seasonal alternation of the classical (spring) and microbial (winter) food webs. However, in the south microbasin, productivity was low and the system was dominated year-round by large inputs of glacier-derived, silt-rich freshwater carrying predominantly small-sized diatoms (Skeletonema spp) and bacteria. When superimposed upon this scenario, highly variable (seasonal) solar radiation and photoperiods could exacerbate north–south differences along Moraleda Channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号