首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Lavrion district of the Attica Peninsula, Greece, exposes the West Cycladic Detachment System (WCDS), a low‐angle crustal‐scale extensional fault system separating tectonostratigraphic units of the Cycladic Blueschist Unit. New multiple single‐grain fusion and step‐heated white mica 40Ar/39Ar ages integrated with existing (U–Th)/He ages and independent paleothermometry resolves a syn‐ to post‐orogenic deformation history. A structurally higher unit records Oligocene greenschist facies deformation that evolved into brittle conditions by the middle Miocene, and shares a similar history to Serifos at the southern end of the detachment system. The structurally lowest unit remained ductile until the late Miocene, preserving pervasive post‐orogenic structures, similar to along‐strike structures at the centre, deepest part of the fault. The similarities of structural styles and the timing of deformation across > 150 km of strike length of the detachment system indicates tens of kilometers of offset and extraordinary potential for correlating observations along Cycladic‐style detachment systems.  相似文献   

4.
5.
In seismically active regions, active low-angle detachment faults are probably more frequent as is commonly thought and may play an important but still underestimated role in the evolution of landforms and basins. We investigate the tectonically active region of Attica (Greece) in the Aegean back arc as a model region to show how basins and mountain ranges commonly thought to be formed by movements on high-angle normal faults in fact reflect the surface expression of displacements on yet undetected, deep-seated, active low-angle normal detachment faults. Inferences are made based on an integrated study of Attica linking the petrology of clastic sediments with geomorphology and structures, and including few new palynological data. From the Miocene to Recent, three sets of normal detachment fault systems were successively active. Shear zones of the 1st (Early Miocene) stage emplaced rocks of the Attic Cycladic high-P metamorphic belt (AC-HP-belt) from depth corresponding to greeschist facies conditions in the brittle, upper crust. In the 2nd stage the WNW dipping Attica low-angle normal detachment fault system between the AC-HP-belt and the un- or weakly metamorphosed rocks of the sub-Pelagonian Zone (SPZ) was active. Clastic sedimentation started in the Late Miocene, during the 2nd stage. Late Miocene and Early Pliocene clastic sediments reveal that during the 2nd stage many areas that presently expose the AC-HP-belt were still covered by the overlying SPZ. Also, now uplifted areas such as the Parnitha mountain range that currently undergo strong erosion were then the sites of sedimentary sinks. The 3rd stage (Late Pliocene through Recent) is associated with dramatic changes in the morphology and recurring steepening of the relief. Reversal of the Parnitha area from the site of deposition into the site of erosion is associated with deposition of coarse conglomerates to the SE of the Parnitha Mt. and S of the Penteli Mt. Sediments of the 3rd stage reflect activity of the here newly described, SSE-dipping Penteli—Athens low-angle detachment fault (PADF) system formed at a high angle to the Attica detachment fault. The outcome of this study is that the present-day geomorphology is to a high degree related to the operation of the PADF system. Steep fault bounding the Athens and Mesogea basins as well as the mountain ranges (Parnitha, Penteli, Hymittos mounts) belongs to its breakaway zone or root into the PADF. Ongoing tectonic movements related to this fault system were responsible for the 1999 Athens (Mw = 6.0) earthquake. We particularly discuss how the PADF may continue into greater depth, the translation magnitude, and how the PADF fits into the wider kinematic framework of the Aegean region.  相似文献   

6.
The main steps of the sedimentary evolution of the west Lombardian South Alpine foredeep between the Eocene and the Early Miocene are described. The oldest is a Bartonian carbonate decrease in hemipelagic sediments linked with an increase in terrigenous input, possibly related to a rainfall increase in the Alps. Between the Middle Eocene and the early Chattian, a volcanoclastic input is associated with an extensional tectonic regime, coeval with magma emplacement in the southern-central Alps, and with volcanogenic deposits of the European foredeep and Apennines, suggesting a regional extensional tectonic phase leading to the ascent of magma. During Late Eocene to Early Oligocene, two periods of coarse clastic sedimentation occurred, probably controlled by eustasy. The first, during Late Eocene, fed by a local South Alpine source, the second, earliest Oligocene in age, supplied by the Central Alps. In the Chattian, a strong increase in coarse supply records the massive erosion of Central Alps, coupled with a structures growth phase in the subsurface; it was followed by an Aquitanian rearrangement of the Alpine drainage systems suggested by both petrography of clastic sediments and retreat of depositional systems, while subsurface sheet-like geometry of Aquitanian turbidites marks a strong decrease in tectonic activity.  相似文献   

7.
The tectono‐sedimentary evolution of the Rotliegend deposits of the northernmost margin of NE German Basin (NEGB) has been analysed on the basis of detailed sedimentary logs of 300 m of core material together with the re‐evaluation of 600 km of seismic lines. Three distinct phases were recognized. During the initial Phase I, basin geometry was largely controlled by normal faulting related to deep‐seated ductile shearing leading to a strong asymmetric shape, with a steep fault‐controlled eastern margin and a gently, dipping western margin. The results of forward modelling along a cross‐section fit the basin geometry in width and depth and reveal a footwall uplift of c. 1000 m. Adjacent to the steep faults, local sedimentation of Lithofacies Type I was confined to non‐cohesive debris flow‐dominated alluvial fans, whereas the gently dipping western margin was dominated by alluvial‐cone sedimentation. During the post‐extensional period (Phase II), cooling of the lithosphere generated additional accommodation space. The sediments of Lithofacies Type II, comprising mainly clast‐supported conglomerates, are interpreted as braided ephemeral stream flow‐surge deposits. Tectonic quiescence and an increase in flood events resulting from wetter climate led to progradation of this facies over the entire region. At the end of this period, the accommodation space was almost completely filled resulting in a level topography. Phase III was controlled by the thermal‐induced subsidence of the southerly located NEGB in post‐Illawarra times. The formerly isolated region tilted towards the SW, thus forming the northern margin of the NEGB during uppermost Havel and Elbe Subgroup times. The sediments of Lithofacies Type III were divided into a marginal sandstone‐dominated environment and a finer‐grained facies towards the SW. The former consists of poorly‐sorted coarse‐grained sandstones of a proximal and medial ephemeral stream floodplain facies. The latter comprise mud flat fines and fine‐grained distal ephemeral stream deposits. The end of the tectono‐sedimentary evolution is marked by the basinwide Zechstein transgression. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

9.
10.
The Patras, Corinth, and northern Saronic gulfs occupy a 200-km-long, N120° trending Pleistocene rift zone, where Peloponnese drifts away from mainland Greece. The axes of Patras and Corinth basins are 25 km apart and linked by two transfer-fault zones trending N040°. The older one defines the western slope of Panachaïkon mountain, and the younger one limits the narrow Rion–Patras littoral plain. Between these two faults, the ca. 4-km-thick Rion–Patras series dips 20–30° SSW. It is part of the Patras gulf synrift deposits, which pile in an asymmetric basin governed by a fault dipping ca. 25–35° NNE, located in the southern Gulf of Patras. Mapping of this fault to the east in northern Peloponnese shows that it is an inactive north-dipping low-angle normal fault (0° to 30°N), called the northern Peloponnese major fault (NPMF). The structural evolution of the NPMF was different in the gulfs of Patras and Corinth. In the Gulf of Patras, it is still active. In northern Peloponnese, footwall uplift and coeval southward tilting flattened the fault and locked its southern part. Steeper normal faults formed north of the locked area, connecting the still active northern part of the NPMF to the surface. After several locks, the presently active normal faults (Psathopyrgos, Aigion, Helike) trend along the southern shore of the Gulf of Corinth. This migration of faults caused the relative 25 km northward shift of the Corinth basin, and the formation of NE–SW trending transfer-faults between the Corinth and Patras gulfs.  相似文献   

11.
This study presents an almost complete Middle Miocene to Pleistocene sequence of synrift sediments in the western branch of the East African Rift. The studied succession is exposed in several patches on an eastward tilted block between the northern tip of the Rwenzori Block and the eastern shoulder of the Albert Rift. In this position, it reaches a maximum thickness of 600 m of which 350 m have been logged systematically by analysing lithofacies and sediment architecture. Stratigraphic subdivision of the succession relies on published biostratigraphic data of endemic mollusc associations and their correlation across East Africa. The synrift sediments encountered are siliciclastics ranging from clay to coarse gravel with gypsum and ferrugineous interlayers or impregnations. Lithofacies and architectural analysis indicate alluvial plain, delta plain, nearshore, delta front, or lacustrine depositional environments. Based on the vertical stacking pattern, prograding and retrograding trends of the depositional environments, and climatic indicators (e.g. conservation of feldspar, gypsum, and/or iron hydroxide precipitation), four evolutionary phases can be distinguished: (i) a first phase between ca. 14.5 and 10.0 Ma is characterised by bedload-dominated fluvial environment with massive sandy to gravelly bedforms, feldspar-rich sands, rare iron impregnations and relatively low accommodation space. This phase is interpreted as pre- and early synrift sedimentation under a semiarid climate. (ii) From ca. 10.0 to 4.5 Ma predominantly fine-grained siliciclastics were deposited in a distal fluvial plain to lacustrine setting characterised by limited accommodation space. Fluctuation of thin beds, dominance of clay and frequent iron impregnations point to a more humid climate with seasonality and weak tectonic activity. (iii) During the third phase between 4.5 and 2.0 Ma delta plain and nearshore deposits with frequent ferrugineous impregnations and rich mollusc associations occurred, indicating a humid period with lake-level highstands and accelerated subsidence. (iv) During the final sedimentary interval between 2.0 and 1.5 Ma gravel units reoccurred with less iron- but more carbonate and gypsum impregnations, and arkosic sandstones. This phase recorded a general aridisation trend most probably caused by the upcoming rain barrier of the Rwenzori Mountains together with accelerated rift-flank uplift and strong subsidence of the rift floor. The results of this study are of particular importance for delineating key controls on sedimentation in the Albert Rift.  相似文献   

12.
In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial–lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE–SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW–SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE–SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.  相似文献   

13.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

14.
The Marnoso–arenacea basin was a narrow, northwest–southeast trending, foredeep of Middle–Late Miocene age bounded to the southwest by the Apennine thrust front. The basin configuration and evolution were strongly controlled by tectonics.

Geometrical and sedimentological analysis of Serravallian turbidites deposited within the Marnoso–arenacea foredeep, combined with palaeocurrent data (turbidite flow provenance, reflection and deflection), identify topographic irregularities in a basin plain setting in the form of confined troughs (the more internal Mandrioli sub-basin and the external S. Sofia sub-basin) separated by an intrabasinal structural high. This basin configuration was generated by the propagation of a blind thrust striking northwest to southeast, parallel to the main trend of the Apennines thrust belt.

Ongoing thrust-induced sea bed deformation, marked by the emplacement of large submarine landslides, drove the evolution of the two sub-basins. In an early stage, the growth and lateral propagation of a fault-related anticline promoted the development of open foredeep sub-basins that were replaced progressively by wedge-top or piggy-back basins, partially or completely isolated from the main foredeep. Meanwhile, the depocenter shifted to a more external position and the sub-basins were incorporated within an accretionary thrust belt.  相似文献   


15.
16.
Calcium-borates, mainly pandermite (priceite) and howlite, but also bakerite and colemanite, are intercalated within the Sultançayir Gypsum (Miocene, Sultançayir Basin, western Anatolia). This lacustrine unit, represented by secondary gypsum in outcrop, is characterized by: (1) a clear facies distribution of depocentral laminated lithofacies and debris-flow deposits, a wide marginal zone of sabkha deposits, and at least one selenitic shoal located toward the basin margin; (2) evaporitic cycles displaying a shallowing-upward trend; and (3) a diagenetic evolution of primary gypsum to (burial) anhydrite followed by its final re-hydration. The calcium borates precipitated only in the depocentre of the lake and were partly affected by synsedimentary reworking, indicating that they formed during very early diagenesis. The lithofacies, which are made up of a host gypsum (finely laminated) and borates (nodules, irregular masses and discontinuous bands; also fine laminations), indicate that the borates grew interstitially because of the inflow and mixing of borate-rich solutions with basinal brines. Borate growth displaced and replaced primary gypsum beneath a relatively deep depositional floor. Borate formation as free precipitates was much less common. The anhydritization of primary gypsum took place during early to late diagenesis (burial <250 m deep). This process also resulted in partial replacement of pandermite and accompanying borates (bakerite and howlite) as well as other early diagenetic minerals (celestite) by anhydrite. Final exhumation resulted in the replacement of anhydrite by secondary gypsum, and in the partial transformation of pandermite and howlite into secondary calcite.  相似文献   

17.
The Concud fault is a 13.5 km long, NW–SE striking normal fault at the eastern Iberian Chain. Its recent (Late Pleistocene) slip history is characterized from mapping and trench analysis and discussed in the context of the accretion/incision history of the Alfambra River. The fault has been active since Late Pliocene times, with slip rates ranging from 0.07 to 0.33 mm/year that are consistent with its present-day geomorphologic expression. The most likely empirical correlation suggests that the associated paleoseisms have potential magnitudes close to 6.8, coseismic displacements of 2.0 m, and recurrence intervals from 6.1 to 28.9 ka. At least six paleoseismic events have been identified between 113 and 32 ka. The first three events (U to W) involved displacement along the major fault plane. The last three events (X to Z) encompassed downthrow and hanging-wall synthetic bending prompting fissure opening. This change is accompanied by a decrease in slip rate (from 0.63 to 0.08–0.17 mm/year) and has been attributed to activation of a synthetic blind fault at the hanging wall. The average coseismic displacement (1.9–2.0 m) and recurrence period (6.7–7.9 ka) inferred from this paleoseismic succession are within the ranges predicted from empirical correlation. Such paleoseismic activity contrasts with the moderate present-day seismicity of the area (maximum instrumental Mb = 4.4), which can be explained by the long recurrence interval that characterizes intraplate regions.  相似文献   

18.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   

19.
An integrated faunal and geochemical dataset has been generated by the study of a late Miocene (early Tortonian) sedimentary section outcropping at Manassi, Levkas Island (eastern Mediterranean). Quantitative analysis of benthic foraminifers from the 25-m-thick section indicates changes of bottom palaeoecological conditions in this part of the eastern Mediterranean, during the analyzed time interval. Benthic foraminifer assemblages are typical of a bathyal environment and testify to relatively oxygenated conditions with low to moderate food supply alternating with periods with an increase in organic matter content. The long-term palaeoceanographic analyses indicate an anti-estuarine circulation model based on the benthic foraminifer and stable isotope results, which evolved in a strong estuarine circulation. The positive relationship existing between the plankton δ18O and δ13C, in most of the record, agrees well with the hypothesis of a variable contribution of runoff. In three stratigraphic levels, samples record heavy bottom water δ18O and δ13C values and light surface δ18O values, representing a wet, warm, estuarine climate with a stratified water column. In two stratigraphic levels, samples have depleted δ13C and δ18O values for both surface and bottom waters. These two samples represent wet, warm climates with some ocean mixing and stratification. The stable isotope signal of foraminifer tests from the Manassi section was influenced by the global temperature changes, but the local factors also played an important role. The palaeoenvironments derived from stable isotope analysis in this study are interpreted as responses to the local tectonic instability together with monsoon intensities that enhanced continental runoff, characteristic for the time interval studied in the study area. Due to the limited data available from this study, no correlations with the precessional, obliquity, or eccentricity cycles can be made.  相似文献   

20.
Extensive deposition of marine evaporites occurred during the Early–Middle Eocene in the South‐eastern Pyrenean basin (north‐east Spain). This study integrates stratigraphic and geochemical analyses of subsurface data (oil wells, seismic profiles and gravity data) together with field surveys to characterize this sedimentation in the foredeep and adjacent platform. Four major evaporite units were identified. The oldest was the Serrat Evaporites unit, with a platform‐slope‐basin configuration. Thick salina and sabkha sulphates accumulated on the platform, whereas resedimented and gravity‐derived sulphates were deposited on the slope, and salt and sulphates were deposited in the deep basin. In the subsequent unit (Vallfogona evaporites), thin sulphates formed on the platform, whereas very thick siliciclastic turbidites accumulated in the foredeep. However, some clastic gypsum coming from the platform (gypsarenites and gypsum olistoliths) was intercalated in these turbidites. The following unit, the Beuda Gypsum Formation developed in a sulphate platform‐basin configuration, where the topography of the depositional surface had become smooth. The youngest unit, the Besalú Gypsum, formed in a shallow setting. This small unit provides the last evidence of marine influence in a residual basin. Sulphur and oxygen isotope compositions are consistent with a marine origin for all evaporites. However, δ34S and δ18O values also suggest that, except for the oldest unit (Serrat Evaporites), there was some sulphate recycling from the older into the younger units. The South‐eastern Pyrenean basin constitutes a fine example of a foreland basin that underwent multiepisodic evaporitic sedimentation. In the basin, depositional factors evolved with time under a structural control. Decreasing complexity is observed in the lithofacies, as well as in the depositional models, together with a diminishing thickness of the evaporite units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号