首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
西藏地温的年际和年代际变化   总被引:19,自引:1,他引:19  
胡军  杜军  边多  左慧林  格桑  杨勇 《地理学报》2007,62(9):925-934
利用1971-2005 年西藏10 个站的0.8 m、1.6 m 和3.2 m 逐月平均地温资料,采用气候倾向率等现代统计诊断方法,研究了近35 年西藏年、季平均地温的变化趋势、气候突变和异 常年份。结果表明:0.8 m 年平均地温在西藏东部的林芝、昌都呈现为下降趋势,其他各站以0.19~0.81 oC/10a 的速率升高;有5 个站的1.6 m 年平均地温呈显著的升高趋势,升温率为 0.20~0.60 oC/10a;3.2 m 年平均地温6 个站均表现为升高趋势,为0.13~0.52 oC/10a,以拉萨升温率最大。在0.8 m 处,① 大部分站点季平均地温呈明显的上升趋势,其中西藏西部、南 部以夏季升幅最大,特别是狮泉河达1.61 oC/10a;北部以冬季增温最突出。东部地区四分之三的季平均地温呈降温趋势。② 大部分站点年平均地温呈逐年代升高趋势,而昌都表现为逐年代降低趋势。③ 狮泉河春、夏季平均地温分别在1996 年和1983 年发生了气候突变;拉萨和日喀则年、季平均地温发生的气候突变是从一个相对偏冷期跃变为一个相对偏暖期,前者 出现在20 世纪80 年代,后者发生在20 世纪90 年代初;而林芝1993 年夏、秋季出现的气候 突变是从一个相对偏暖期跃变为一个相对偏冷期。④ 西藏西部年、季平均地温以异常偏高年份居多,且发生在20 世纪末至21 世纪前5 年;南部年、季平均地温均为异常偏高年份,主要出现在20 世纪90 年代中后期;北部年、季平均地温异常偏高年均出现在21 世纪前5 年, 异常偏低年份以20 世纪80 年代居多;东部年平均地温以异常偏低年为主。青藏铁路沿线西藏境内测站最大冻土深度以-4.5~-25.4 cm/10a 的速率呈显著减小趋势,安多减幅最大  相似文献   

2.
拉萨近半个世纪降水的变化特征   总被引:6,自引:1,他引:6  
杜军  建军  余燕群  杨斌  拉巴 《干旱区地理》2008,31(3):397-402
利用拉萨1952-2005年逐月降水量,≥0.1 mm、1.0 mm、5.0 mm和10.0 mm年降水日数,分析了近半个世纪拉萨年、季降水量及年降水日数的年际和年代际变化.结果发现:近半个世纪以来,拉萨年降水量表现为前30年呈不显著的减少趋势,减幅为17.8 mm/10 a;季降水量除夏季呈不显著的减少趋势外,其它各季均表现为增加趋势,以秋季增幅最大;≥0.1 mm、≥1.0 mm和≥5.0 mm年降水日数表现为不同程度的增加趋势.近25年≥10.0 mm的年降水日数呈极显著的增加趋势.20世纪50年代至80年代夏季降水量表现为逐年代减少趋势,秋季降水量则呈逐年代增加趋势,而冬季降水量为负距平.各等级年降水日数20世纪80年代偏少,90年代偏多.年降水量异常偏旱年主要出现在20世纪80年代,50年代和60年代的初期各出现一次异常偏涝年,70年代从未出现过异常年份.14年振荡周期可能是影响年降水量的主导周期.  相似文献   

3.
东亚夏季风的变化特征及其对甘肃夏季暴雨日数的影响   总被引:1,自引:0,他引:1  
采用NCEP/NCAR再分析资料,计算了1974—2013年乔云亭等定义的东亚季风指数,研究了东亚夏季风的变化特征,利用甘肃省80个站逐日降水资料,分析了东亚夏季风对夏季甘肃暴雨日数的影响。结果表明:(1)夏季,西南季风、东南季风和偏北季风存在明显的年际变化且有所差异。(2)夏季,西南季风、东南季风对甘肃省暴雨日数的影响存在很大差异:当西南季风盛行时,西太平洋副热带高压位置偏西,东亚大槽位于贝加尔湖至中国西北部,冷空气与西太平洋副热带高压输送的暖湿气流在陇东南一带交汇,贝加尔湖至张掖为西南暖湿和西北干冷气流,孟加拉湾水汽输送在陇东南地区辐合,造成河东陇南南部、天水东部、平凉、庆阳西部一带和河西张掖地区暴雨日数偏多;当东南季风盛行时,西太平洋副热带高压西伸北抬,冷暖空气主要交汇于甘肃中西部,孟加拉湾西南水汽输送在河东西南部辐合,造成甘南高原、甘肃中部、河西武威一带和酒泉地区暴雨日数偏多。  相似文献   

4.
近50年来河西走廊平原区气候变化的区域特征及突变分析   总被引:14,自引:3,他引:14  
近50年来,河西走廊平原区的气温在20世纪60~80年代偏低,90年代以后明显偏高,其中冬季升温显著,而降水在60年代偏少,70年代最多,80年代又偏少,90年代以后又偏多,2000年以来秋季降水增加显著。在全球变暖背景下,走廊平原区的气温突变明显,而降水突变不明显;区域气温突变比较一致,春、夏、秋季在90年代中后期发生升温突变,冬季在80年代中期发生升温突变,年平均气温在80年代中期和90年代中后期也发生升温突变;降水突变存在一定的区域差异,东、西部降水在60年代中后期发生突变,突变后降水量增多。  相似文献   

5.
榆林地区1970-2010年气候因子变化特征分析   总被引:4,自引:0,他引:4  
榆林位于陕西省黄土高原和内蒙古毛乌素沙地的交接地带,是我国北方农牧交错带的典型地区,地理环境复杂多样,致使该地区生态环境比较敏感,极易受到气候变化和人类活动的影响和干扰。为探讨榆林地区气候变化的发展趋势和特征,基于1970-2010年气象资料,对榆林地区5个气象指标(平均最低气温、平均最高气温、平均气温、降水量和太阳辐射)进行空间插值,进而分析了各指标的季节和年际变化特征,即趋势变化、周期性变化、突变特征。结果表明,榆林地区气温呈现上升的趋势,春季和冬季的气温增幅对全年的增温贡献较大;降水量波动变化较大,夏季降水量减少比其他季节明显。20世纪80年代的降水量较大,90年代前期和中期降水量减少,而90年代后期降水量出现了回升趋势;41 a来的太阳辐射呈现下降的趋势,夏季太阳辐射的减少对全年太阳辐射的减少贡献较大。5个气象指标的周期性变化在大时间尺度上(如25~32 a)变化比较稳定,在小时间尺度上差异比较明显;降水量和平均最低气温在三类时间尺度(如5~15 a、15~25 a和25~30 a)上的周期比较明显。另外,除春季降水量外,其他季节的气象因子在1970-2010年期间变化频率有增加、时间间隔减少的趋势,说明最近10~20 a榆林地区气候变化比较活跃。对榆林地区气候变化特征进行分析,为进一步揭示气候变化下榆林地区农业生产系统的影响机理提供理论基础,为当地政府制定农业生产政策提供决策支持。  相似文献   

6.
西藏高原农业界限温度的变化特征   总被引:2,自引:0,他引:2  
杜军  胡军  索朗欧珠 《地理学报》2005,60(2):289-298
根据西藏1971~2000年≥0℃、10℃界限温度资料,建立了小网格推算模式,应用GIS推算出500m×500m网格点上的农业界限温度值,分析了界限温度的空间分布特征、趋势变化、年代际变化和气候异常。结果表明:界限温度持续日数及积温总的分布趋势自东南向西北减小,并随着海拔高度的升高、纬度的增大而减小。过去30年,西藏大部分站点≥0℃表现为初日提早、终日推迟、持续日数延长、积温增加的趋势。20世纪70年代,各站点≥0℃积温偏少,持续日数较短;主要农区≥10℃积温呈逐年代增加趋势,90年代热量最充足。前20年西藏各站点≥0℃的积温未出现过异常偏高年,90年代后期大部分站点发生了异常偏高年。  相似文献   

7.
8.
利用藏北高原西藏那曲地区6个气象站1971—2011年逐年月降水量、降水日数资料,通过线性倾向估计、多阶曲线模拟和Mann-Kendall法等气候统计学诊断方法,对近41年来降水趋势变化的地理分布以及年内、年际变化规律进行了分析,并进行突变检测。结果表明:近41年来,那曲地区年降水量总体呈增加趋势,经历了由偏少到偏多的2个周期;降水增加夏季最明显,各站在6.48~20.40 mm/(10 a),冬季变化很小;日降水量≥0.1 mm日数年际周期变化与降水量变化基本一致,增加趋势空间分布呈东南向西北递减形势;自1996年开始各站降水增加趋势明显,1999年发生气候突变可能性较大。  相似文献   

9.
1961-2010 年西藏极端气温事件的时空变化   总被引:9,自引:1,他引:9  
杜军  路红亚  建军 《地理学报》2013,68(9):1269-1280
利用18 个气象站点1961-2010 年逐日最高、最低气温和平均气温资料,分析了西藏极端气温事件的变化规律。结果表明:近50a 西藏霜冻日数和结冰日数明显减少,结冰日数减少显著的区域集中在藏北,霜冻日数则在整个区域都显著减少;生长季长度以4.71 d/10a 的速度明显延长,以拉萨、泽当最显著。极端最低气温在全区范围均呈显著升高,尤其是近30a 升幅更大,达1.06 oC/10a;最高气温的极大值在沿雅鲁藏布江一线东段和那曲地区上升较明显,而在南部边缘地区有下降的趋势。冷夜(昼) 日数普遍明显减少,减幅为9.38 d/10a (4.96 d/10a);暖夜(昼) 日数显著增加,增幅为10.99 d/10a (6.72 d/10a)。大部分极端气温指数的变化趋势与海拔高度有较高的相关性,其中极端最低气温与海拔高度呈正相关,极端最高气温、结冰日数、暖昼(夜) 日数和生长季长度呈负相关。极端最高、最低气温和气温暖指数呈逐年代增加趋势,极端气温冷指数和生长季长度表现为下降的年代际变化特征。在时间转折上,极端最低气温、冷(暖) 夜指数和生长季长度的突变点发生在20 世纪90 年代中期前,霜冻、结冰日数和冷(暖) 昼指数的突变点则推迟到21 世纪初期。多数情况下,西藏极端气温指数的变幅比全国、青藏高原及其周边地区偏大,说明西藏极端气温变化对区域增温的响应更为敏感。  相似文献   

10.
1960-2010年中国降水区域分异及年代际变化特征   总被引:1,自引:0,他引:1  
利用1960-2010年中国1840个台站年降水量数据,采用经验正交函数(EOF)和旋转经验正交函数分解方法(REOF)对降水进行分区,并对各区降水的变化特征进行了研究.结果表明:基于多站点资料结合REOF方法实现的降水分区与中国降水实际区域分异特征比较符合,并与中国气候区划相一致.中国各区降水变化特征分析表明,东部各区降水在20世纪70年代末、80年代末-90年代初和21世纪初发生雨带的南北移动过程,其中夏季雨带的移动主要受东亚夏季风和大气环流年代际变化的影响.西北地区降水以1985/1986年为突变年,西北西部地区降水由前期偏少转为偏多,主要与来自阿拉伯海和里海异常偏多的水汽输送有关;西北东部地区降水由前期偏多转为偏少,主要与季风的年代际减弱有关.东北地区降水在80年代初由前期接近正常转为偏多,90年代末降水由前期偏多转为偏少,主要与季风和西北太平洋水汽输送的年代际变化相关.西南部各区降水阶段性变化明显,2000年以前西南东北部地区降水与西部地区基本呈反向变化,主要受青藏高原地形、东亚季风和副热带高压等因素的影响,降水阶段性变化明显、成因复杂.  相似文献   

11.
近50年山西终霜冻的时空分布及其影响因素   总被引:4,自引:0,他引:4  
李芬  张建新  武永利  周晋红  程艳芳 《地理学报》2013,68(11):1472-1480
利用山西62 个气象观测站1961-2010 年的逐日最低地温资料,分析了山西终霜冻的时空分布特征,结果表明:(1)山西近50 年平均终霜冻日为4 月12 日,总体上呈现南部早北部晚的规律,但具体分布还受地形及地理位置的影响;平均终霜冻日与纬度和海拔高度均呈显著的正相关,且纬度对平均终霜冻日的影响要大于海拔高度。(2)M-K突变检验表明,大部分站点的终霜冻日都发生了显著的气候突变,突变时间在1975-1996 年之间;突变年份与海拔高度和纬度均为负相关,且与纬度的相关程度比海拔高度更为密切。(3)山西近50 年终霜冻变化趋势的分布具有明显的区域差异,提前幅度较大的地区主要位于中西部和南部的广大地区,推后幅度较大的地区集中在西北部以及中东部;变化趋势与海拔高度和纬度均为负相关,海拔高度对变化趋势的影响大于纬度。(4)山西正常终霜冻的出现概率为54%~74%,出现概率最大的地区位于东南部以及北中部等地;偏晚终霜冻出现概率为2%~22%,北部和东南部是偏晚终霜冻出现概率最大的地区;特晚终霜冻的出现概率为14%~36%,出现概率较大的地区集中在北中部和中西部。(5)海拔高度与偏晚终霜冻发生概率呈负相关关系,纬度与特晚终霜冻发生概率呈正相关关系;纬度、海拔高度与正常终霜冻发生概率的相关都不密切;纬度对不同程度终霜冻发生概率的影响要大于海拔高度。  相似文献   

12.
深入研究黄河流域霜冻演变规律,可为科学防范霜冻危害,促进气候资源合理开发利用提供依据。基于1960—2020年黄河流域83个气象站点统计资料,采用Mann-Kendall突变检验、Morlet小波分析和相关分析等方法,对黄河流域霜冻日期时空变化特征及其影响因素进行了分析。结果表明:(1)1960—2020年黄河流域平均初霜日期为10月8日,终霜日期为4月30日,平均无霜期161 d。61 a来初霜日以2.51 d·(10a)-1的速率推迟、终霜日以-2.07 d·(10a)-1的速率提前,无霜期以4.48 d·(10a)-1的速率显著延长。20世纪70年代初霜日最早,终霜日最晚,无霜期最短,21世纪10年代初霜日最晚,终霜日最早,无霜期最长。(2)小波分析表明,黄河流域初、终霜日和无霜期均存在28 a左右的主周期变化。初霜日于2002年发生突变,终霜日于2000年突变,无霜期突变发生于2001年。(3)从空间分布来看,由上游、中游到下游地区初霜日逐渐延迟,终霜日逐渐提前,无霜期日数逐渐延长。初霜日在流域各地均呈推迟趋势,...  相似文献   

13.
利用2007—2020年西藏38个气象站点平均草面温度(简称草温)、平均气温、平均地表温度、云量、降水量等观测资料,采用气候统计诊断方法分析了西藏草面温度的时空分异特征及其影响因素,以期科学研究当地草地生态系统和开展专业气象服务。结果表明:西藏年平均草温呈自东南向西北递减的分布。草温与海拔高度存在显著的负相关,海拔高度每升高100 m,季平均草温降低0.44~0.70 ℃,年平均草温降低0.58 ℃;与纬度有着显著的曲线关系,29.3°N以南(北)地区,随着纬度增加,草温随之升高(降低)。各站草温呈一峰一谷的日变化特征,日最低值出现在07:00—08:00(北京时间),日最高值均出现在14:00;草温月平均最低值都出现在1月,月平均最高值出现在6月或7月;76%的站点草温的变化为夏季>春季>秋季>冬季的气候特征。西藏草温年较差为21.4 ℃,较气温年较差偏大3.1 ℃;草温日较差达35.7 ℃,远高于气温日较差,偏大21.6 ℃。草温与气温之差以夏季最大,其次是春季、冬季两者比较接近;草温与地表温度之差以春季最大,夏季次之,冬季最小。在空间分布上,月平均草温与气温、地表温度均呈显著的正相关,与平均风速、积雪日呈显著的负相关;积雪深度对草温的影响,除冬季外二者存在显著的负相关;大部分月份平均草温与总云量、低云量、降水量的关系不显著。86.8%的站点5—9月平均逐小时草温与降水量存在显著的负相关关系。  相似文献   

14.
杜军  马鹏飞  潘多 《地理学报》2016,71(3):422-432
利用西藏自治区38个气象站点1981-2014年逐日02:00,08:00,14:00和20:00北京时4个时次气温数据,采用线性回归,Mann-Kendall非参数检验等方法,分析了近34年来西藏时次气温变化的时空分布,突变特征,并探讨了气温变化率与经纬度,海拔高度之间的关系.结果表明:近34年西藏四季各时次气温表现一致的升高趋势,升温率为0.14~0.80 ℃/10a,以冬季升温最为显著.在各时次中,除夏季08时升温率大之外,其他三季均以14时升温率最大.各站年时次气温最大升温率为0.36~0.94 ℃/10a(P < 0.001),只有32%的站点出现在08时,主要分布在昌都市大部,阿里地区大部以及那曲,拉萨,日喀则等站点,其余站点都出现在14时.春,秋季时次气温升温率与经度有关,西部大于东部;冬季时次气温升温最大区域主要在高海拔和纬度较高地区,夏季气温升幅最大区域位于较高纬度.20世纪80年代四季和年各时次气温均为负距平,而21世纪最初的10年各时次气温一年四季都为正距平.在时间转折上,34年来西藏年,季绝大部分时次的气温都发生了气候突变,夏季4个时次气温突变时间都发生在21世纪最初的10年;冬季02时和08时气温突变点发生20世纪90年代末,14时和20时气温的突变点却出现在21世纪最初的10年.影响西藏高原气温变化的因素有很多,主要包括地形,高原内部气象要素以及外部环流影响等.  相似文献   

15.
Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the annual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a-1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.  相似文献   

16.
Based on the meteorological data of 20 stations in the Hengduan Mountains region during 1961-2009, the annual and seasonal variation of potential evapotranspiration was analyzed in combination with the Penman-Monteith model. With the method of Spline interpolation under ArcGIS, the spatial distribution of potential evapotranspiration was presented to research the regional difference, and the correlation analysis was used to discuss the dominant factor affecting the potential evapotranspiration. The results indicated that the an-nual potential evapotranspiration showed a decreasing tendency since the 1960s, especially from the 1980s to 1990s, while it showed an increasing tendency since 2000. Regional potential evapotranspiration showed a rate of -0.17 mm a?1. Potential evapotranspiration in north, middle and south of the Hengduan Mountains exhibited decreasing trends over the studied period, and its regional trend was on the decline from southwest to northeast.  相似文献   

17.
By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China-Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号