共查询到20条相似文献,搜索用时 15 毫秒
1.
A relative and absolute (pollen concentration) diagram is presented from Østervatnet, southern Varanger peninsula, north of the Main sub-stage (Tromsø-Lyngen) moraines. The pollen assemblage zones are correlated biostratigraphically with chronozones from Bølling to Middle Flandrian. Sediment analyses (loss on ignition and particle size) and implied sedimentation rates support this chronology. The three 14 C-dates are considered too old by 1000–2000 years because of hard water error. Redeposited Tertiary palynomorphs were encountered in the lower, mineral sediments; their source is unknown. Pollen spectra and pollen deposition rates indicate tundra throughout the Late Weichselian, with Artemisia -grass steppe predominant during Older and Younger Dryas. Rapid vegetational changes began at around 10,000 B.P., followed by successive immigration and establishment of tree birch (with accompanying floristic change) and Juniperus. Ericales were conspicuously unimportant and the pollen diagram records a herb flora rich in basiphilous species 相似文献
2.
BOREAS Foged, N. 1978 03 01: Diatoms from the Middle and Late Weichselian and the Early Flandrian period on Andøya, north Norway. Boreas, Vol. 7, pp. 41–47. Oslo. ISSN 0300–9483.
From cores from a depth of 9.9 m up to 5.1 m below the present surface of a mire situated approx. 36 m above sea level on Andøya, north Norway, 47 samples were analysed for diatoms. Some 240 taxa were recorded, chiefly in Late Weichselian and Early Flandrian material. They were subdivided according to their halobion and pH relation. On the whole, the pH reaction of the environment was neutral, but it changed from faintly acid to faintly alkaline during the sedimentation of the Late Weichselian material. 相似文献
From cores from a depth of 9.9 m up to 5.1 m below the present surface of a mire situated approx. 36 m above sea level on Andøya, north Norway, 47 samples were analysed for diatoms. Some 240 taxa were recorded, chiefly in Late Weichselian and Early Flandrian material. They were subdivided according to their halobion and pH relation. On the whole, the pH reaction of the environment was neutral, but it changed from faintly acid to faintly alkaline during the sedimentation of the Late Weichselian material. 相似文献
3.
The postglacial sea-level history along a cross-section of western Norway has been studied in detail. Ten local sea-level curves were used to construct an equidistant shoreline diagram, covering the last 13000 years. This includes 76 radiocarbon dates, of which the majority represent lacustrine sediments at the marine/lacustrine boundary in cores from emerged lakes. The distance between the westernmost and easternmost sites is 170 km and the difference in total emergence along this profile is more than 200 m. The shorelines all dip westward with a decreasing gradient through time. The Late Weichselian lines are all slightly curved whereas the Holocene lines are apparently straight. After the formation of the uppermost shoreline by around 12 800 BP there was a rapid emergence that decelerated with time to a near standstill during the Younger Dryas. From about 10 300 there was again a rapid emergence followed by the Tapes transgression along the coast and a standstill in the most easterly areas. At the western end of this profile, the Tapes transgression started around 9000 and culminated approximately 6000 BP, when a gradual regression occurred. To the east the early Holocene regression minimum occurs at a younger date and the transgression maximum is up to 1500 years older. 相似文献
4.
Glaciation in northern East Greenland during the Late Weichselian and Early Flandrian 总被引:2,自引:1,他引:2
CHRISTIAN HJORT 《Boreas: An International Journal of Quaternary Research》1979,8(3):281-296
The frontal positions of glaciers in fiords, sounds and larger valleys during the glaciation maximum around 10,000 B.P. and the extent of ice-free areas at that time are shown, together with an isobase map of the altitude of the contemporaneous (or younger) marine limit. A number of 14 C and some Amino Acid datings related to the glacial advance, culmination and retreat are presented. Some time after a Middle Weichselian period with restricted glaciation the glaciers advanced and stood at their maximum positions at about 10,300 B.P., in some areas remaining there until about 9500 B.P., at which time sizeable lowland areas outside the ice-fronts were unglaciated and a large number of nunataks of various types occurred. The retreat of the glaciers started about 10,300 B.P. in the south, but seems to have been delayed towards the north. However, by 9000 B.P. all outer parts of the fiords were deglaciated and their central parts by 8500 B.P. The marine limit synchronous with this glaciation maximum and the deglaciation sinks from a southern maximum value of about 110 m to about 55 m in the north, reflecting a decreasing amplitude of the glacial advance. 相似文献
5.
Hilary H. Birks Aage Paus J. I. Svenndse Torbjrn Alm J. Mangerud J. Y. Landvik 《第四纪科学杂志》1994,9(2):133-145
A synthesis of the principal environmental changes that are inferred to have occurred in Norway and Svalbard (Fig. 1) during the Late-glacial period (14-9 ka BP) is presented. The paper has three sections dealing separately with (I) western Norway, (II) northern Norway and (III) Spitsbergen, Svalbard. The main conditions described include glacial events, sea-level changes, vegetation history and climatic variations. A summary chart of environmental reconstructions is presented for each of the three areas, each including a curve of temperature reconstructions for the Late-glacial period. These indicate some significant regional variations in contemporaneous thermal conditions during the Late-glacial. 相似文献
6.
ROLF SØRENSEN 《Boreas: An International Journal of Quaternary Research》1979,8(2):241-246
The older 'moraine lines' outside the Ra Moraine in the outer Oslofjord area have been correlated with events in Bohuslän, Sweden. Recent radiocarbon datings in the vicinity of the Ra Moraine and a radiocarbon dated sea-level curve for the Ski area show that the Ra Moraine was formed during the Early Younger Dryas, whereas the Ski Moraine was formed at the end of the Younger Dryas chronozone. An equidistant shoreline diagram together with a large number of marine limit observations have been used to establish the position of the glacier front during Late Younger Dryas and Early Preboreal chronozones. Reconnaissance mapping indicates a fairly regular recession with many short stops during the Bølling, Older Dryas and Allerød chronozones; at least two readvances to the Ra Moraine before 10,600 years B.P.; a rapid recession during the Middle Younger Dryas and a number of ice-front oscillations at the end of the Younger Dryas chronozone. 相似文献
7.
Data from eastern England, Scotland, the northern North Sea and western Norway have been compiled in order to outline our current knowledge of the Middle and Late Weichselian glacial history of this region. Radiometric dates and their geological context from key sites in the region are presented and discussed. Based on the available information the following conclusions can be made: (i) Prior to 39 cal ka and most likely after ca 50 cal ka Scotland and southern Norway were extensively glaciated. Most likely the central North Sea was not glaciated at this time and grounded ice did not reach the shelf edge. (ii) During the time interval between 29 and 39 ka periods with ameliorated climate (including the Ålesund, Sandnes and Tolsta Interstadials) alternated with periods of restricted glaciation in Scotland and western Norway. (iii) Between 29 and 25 ka maximum Weichselian glaciation of the region occurred, with the Fennoscandian and British ice sheets coalescing in the central North Sea. (iv) Decoupling of the ice sheets had occurred at 25 ka, with development of a marine embayment in the northern North Sea (v) Between 22 and 19 ka glacial ice expanded westwards from Scandinavia onto the North Sea Plateau in the Tampen readvance. (vi) The last major expansion of glacial ice in the offshore areas was between 17.5 and 15.5 ka. At this time ice expanded in the north-western part of the region onto the Måløy Plateau from Norway and across Caithness and Orkney and to east of Shetland from the Moray Firth. The Norwegian Channel Ice Stream (NCIS), which drained major parts of the south-western Fennoscandian Ice Sheet, was active at several occasions between 29 and 18 ka. 相似文献
8.
BOREAS Vorren, K.-D. 1978 03 01: Late and Middle Weichselian stratigraphy of Andøya, north Norway, Boreas, Vol. 7, pp. 19–38. Oslo. ISSN 0300–9483.
Bio-stratigraphy and14 C datings from Lake Endletvatn, 69o 44'N and 19o 05'E, approx. 35 m above sea level, suggest that the lacustrine sedimentation started about 18,000 B.P. The Middle Weichselian vegetation was probably a dry arctic, partly barren, grassland type with abundant Draba spp. and perhaps also Braya spp. Two climatic ameliorations of this chronal substage, named Endletvatn thermomers 1 and 2 (ET 1 and 2), have been recorded. During ET 2, the beginning of which has been dated at about 15,000 B.P., a humid climate prevailed, with a July temperature probably not deviating much from the present one. The colonization by low alpine and subalpine species probably started in the Bølling Chronozone. During the early Allerød Chronozone, protocratic conditions with grasses RumexlOxyria, Papaver and Sagina of. saginoides prevailed. During the middle of the Allerød, stable soil and continuous vegetation was established at sheltered places. At the transition to the Younger Dryas Chronozone a climate favouring Artemisia changed this vegetational development. The middle of the Younger Dryas was cool and humid, probably with an upper low alpine vegetation. The end of this chronozone was characterized by a vegetation of low alpine heaths with Empetrum and Dryas.
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed. 相似文献
Bio-stratigraphy and
Diatom analysis (Foged 1978) suggests that there has been no direct marine influence in the basin. The marginal moraine stratigraphy, the marine limit and the climatic development are discussed. 相似文献
9.
DAVID E. SMITH KENNETH S. R. THOMPSON DAVID D. KEMP 《Boreas: An International Journal of Quaternary Research》1978,7(2):97-107
Two episodes of glaciation are identified in the Teith valley, central Scotland. During the earlier episode, the valley was wholly occupied by an ice sheet, but during the later episode, correlated with the Loch Lomond Readvance, ice only occupied the upper part of the valley. The deglaciation which followed each episode was marked in particular by sequences of kame and outwash terraces. A terrace related to the second episode grades into a large fan buried beneath a sequence of marine deposits in the nearby Forth valley. The latest of these, the carse clays, are related to Flandrian terraces in the Teith valley. 相似文献
10.
JOKOB J. MØLLER TOR K. DANIELSEN ARNE FJALSTAD 《Boreas: An International Journal of Quaternary Research》1992,21(1):1-13
Morphological, seismic and lithostratigraphic investigations of a moraine deposit at Bleik (the Bleik moraine), northern Andøya, show short-distance transported till overlying long-distance transported predominantly glaciofluvial ice-marginal deposits. Consolidated glaciomarine sediments from a core at present sea-level, c . 400 m distally to the moraine complex, contain 31 species of foraminifera, among which Cassidulina reniforme, Islandiella helenae and Trifarina fluens dominate, and fragments of the molluscs Mya truncata and Astarte sp. and the echinoid Strongylocentrotus sp. Amino acid analyses of the foraminifera Cibicides lobatulus and the mollusc Mya truncata indicate ages between 22,000 and 16,000 BP. Radiocarbon dating of fragments of Mya truncata from the upper part of the core gave an age of 17,940 ± 245 BP, while a dating of unidentified shell fragments from the lower part gave an infinite age (>40,000 BP). The sediment was probably disturbed by icebergs beyond the end moraine zone, and the radiocarbon and amino acid dating of Mya truncata therefore represent a maximum age for this process. This new evidence indicates two phases with a higher relative sea-level than at present at Bleik, c . 18,000 and >40,000 BP. The Bleik moraine probably represents the early Late Weichselian glacial maximum ( c . 22,000 BP), while the underlying deglaciation deposit and associated beach-ridge (Bruvollen) is of pre-Late Weichselian age. Moraine ridges 3–4 km to the south of Bleik probably indicate advances of local glaciers between 22,000 and 18,000 BP. 相似文献
11.
KNUT KRZYWINSKl BJØRG STABELL 《Boreas: An International Journal of Quaternary Research》1984,13(2):159-202
Sediments from twenty-eight basins were surveyed; ten of these basins with a representative lithostrati-gfaphy wee studied to determine their isolation from the sea during Late Weichselian. Diatom analysis was used to determine salinity changes, which were dated by pollen analysis and the radiocarbon method. The area was deglaciated in the early Boiling, and a regression of about 5 m followed. A transgression of more than 10 m started in late Boiling and terminated in middle Younger Dryas, with a transgression maximum between 38.2 and 40 m above present sea level. All the investigated basins were finally isolated in late Younger Dryas/early Preboreal, during a rapid regression. Repeated cycles of chinophilous/ chinophobous plant communities in the area reflect climatic changes in the period. No evidence of an Older Dryas ice readvance was found. 相似文献
12.
Kylen Lake, located within the Toimi drumlin field, is critically positioned in relation to Late Wisconsin glacial advances, for it lies between the areas covered by the Superior and St. Louis glacial lobes between 12,000 and 16,000 yr B.P. The pollen and plant-macrofossil record suggests the presence of open species-rich “tundra barrens” from 13,600 to 15,850 yr B.P. Small changes in percentages of Artemisia pollen between 14,300 and 13,600 yr B.P. appear to be artifacts of pollen-percentage data. Shrub-tundra with dwarf birch, willow, and Rhododendron lapponicum developed between 13,600 and 12,000 yr B.P. Black and white spruce and tamarack then expanded to form a vegetation not dissimilar to that of the modern forest-tundra ecotone of northern Canada. At 10,700 B.P. spruce and jack pine increased to form a mosaic dominated by jack pine and white spruce on dry sites and black spruce, tamarack, and deciduous trees such as elm and ash on moist fertile sites. At 9250 yr B.P. red pine and paper birch became dominant to form a vegetation that may have resembled the dry northern forests of Wisconsin today. The diagram terminates at 8410 ± 85 yr B.P. Climatic interpretation of this vegetational succession suggests a progressive increase in temperature since 14,300 yr B.P. This unidirectional trend in climate contrasts with the glacial history of the area. Hypotheses are presented to explain this lack of correspondence between pollen stratigraphy and glacial history. The preferred hypothesis is that the ice-margin fluctuations were controlled primarily by changes in winter snow accumulation in the source area of the glacier, whereas the vegetation and hence the pollen stratigraphy were controlled by climatic changes in front of the ice margin. 相似文献
13.
J. R. Flenley A. Sarah M. King Joan Jackson C. Chew J. T. Teller M. E. Prentice 《第四纪科学杂志》1991,6(2):85-115
Easter Island occupies an exceptionally isolated position in the south Pacific Ocean. It is entirely volcanic, and is famous for its giant statues. Late Quaternary sediments have been investigated in three craters: Rano Raraku, Rano Aroi and Rano Kao, giving a continuous record over the past 30 Ka. Pollen records indicate that the island was formerly forested. Palynological and sedimentological evidence suggests a Late Pleistocene climate slightly cooler and drier than the present. Deforestation by people occurred mainly between 1200 and 800 yr BP. This may have led to an ecological disaster and to the decline of the megalithic civilization. The depauperation of the present native flora owes more to human activity than to isolation. 相似文献
14.
Late Weichselian and Holocene shoreline displacement in the Trondheimsfjord area, central Norway 总被引:1,自引:0,他引:1
Shoreline displacement data from the Trondheimsfjord area have been collected and a synthesis of the Late Weichselian and Holocene relative uplift is presented. The isobase direction is N 30–35°E during the whole period. The gradients of the shorelines are 1.7? m/km at 11,800 years B.P., 1.3 m/km at 10,000 years B.P., gradually decreasing towards the present with a value of 0.2 m/km at 5,000 years B.P. Some irregularities in the shoreline gradient curve in the Late Weichselian and Preboreal chronozones may be ascribed to crustal readjustments by faults. An interpolation of the 9,500 years B.P. shoreline to the Ångermanland and Baltic area shows a relative uplift at 11,800 years B.P. of 400–450 m in the central area of glaciation. The island of Hitra was probably deglaciated at about 12,000 years B.P. and Ørlandet/Bjugn somewhat later. The Younger Dryas ice marginal deposits at Tautra have been deposited early in this chronozone, and deposits proximal to this at Hoklingen and Levanger were probably deposited in the late part of the same chronozone. 相似文献
15.
Late Weichselian glaciation history of the northern North Sea 总被引:8,自引:1,他引:8
HANS PETTER SEJRUP HAFLIDI HAFLIDASON INGE AARSETH EDWARD KING CARL FREDRIK FORSBERG DAVID LONG KÅRE ROKOENGEN 《Boreas: An International Journal of Quaternary Research》1994,23(1):1-13
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP. 相似文献
16.
Anna Siedlecka 《Precambrian Research》1982,18(4):319-345
Non-columnar stromatolites occur in the late Precambrian Annijokka Member of the Båtsfjord Formation of the Varanger peninsula, north Norway. The stromatolites form biostromes up to 0.5 m thick embedded within peritidal, shallowing-up, siliciclastic-dolomite cycles. The stromatolite biostromes tend to occur in the upper, dolomite-rich portions of the cycles and are mostly calcite-dominated.Interpretation of the origin of the host sediments, combined with the location of the biostromes in the depositional sequences and with the contrasting mineralogy between the latter and the stromatolites, suggests that the majority of the stromatolite biostromes originated in freshwater and schizohaline supralittoral ponds. 相似文献
17.
Late Weichselian vegetation, climate, and floral migration at Sandvikvatn, North Rogaland, southwestern Norway 总被引:2,自引:0,他引:2
AAGE PAUS 《Boreas: An International Journal of Quaternary Research》1988,17(1):113-139
Pollen analysis from Sandvikvatn has elucidated the local Late Weichselian vegetational and climatic history since deglaciation about 14,000 B.P. The pleniglacial period, the first of three climatic main periods and ending c. 13,600 B.P., is an Artemisia -dominated pioneer vegetation on disturbed mineral soils. The Late Weichselian Interstadial (13,600-11,000 B.P.) comprises a Salix -shrub consolidation phase and, from 12,900 B.P., a birch-forest optimum phase. In the Younger Dryas Stadial (11,000–10,100 B.P.) the Artemisia -dominated pioneer vegetation returns. Three climatic oscillations are demonstrated at intervals of about 500 years within the Interstadial. The oldest two, about 12,500 and 12,000 B.P., could both have been connected with the 'Older Dryas'. Cold winters and strong winds, causing soil erosion and drought, are suggested as important factors during the climatic periods unfavourable to woody vegetation. In the pleniglacial and Younger Dryas periods the winds are assumed to be katabatic. During the whole Late Weichselian southern species dominate locally. A northwards spread is demonstrated for the majority of the local late-glacial taxa, including the endemic Primula scandinavica and also Papaver radicatum and Aconitum , both previously discussed as part of the hypothesis of Weichselian ice-free refugia. 相似文献
18.
Palynological results from Liastemmen indicate a tripartite division of the Late Weichselian. In the pleniglacial period, from deglaciation ca. 14000 BP to ca. 13000 BP, Artemisia-dominated pioneer vegetation on disturbed, mineral-soil was strongly influenced by cold winters and katabatic winds. The Late Weichselian Interstadial (ca. 13000 BP-ca. 11000 BP) comprises a Salix-shrub consolidation phase, and from ca. 12700 BP a tree-birch phase. In the last 500 years of this period July and January means are estimated to about 16°C and between ?2°C and ?6°C, respectively. In the Younger Dryas Stadial (ca. 11000 BP-ca. 10200 BP) Artemisia-dominated vegetation returns. Three brief climatic deteriorations (ca. 12 250 BP, 11 700 BP, and 11 300 BP), unfavourable to woody vegetation on humus soils, are demonstrated within the interstadial. Critical climatic factors include cool winters and strong winds, exposing vegetation and soil to frost, drought, and erosion. The oldest and strongest oscillation, probably involving local deforestation, is correlated with the ‘Older Dryas deterioration’. Boreal-circumpolar, eurasiatic, and arctic-alpine plants dominated the late-glacial flora. For the majority of the late-glacial taxa a northward migration is demonstrated. This may also apply for Papaver radicatum, Pinguicula alpina, and Primula scandinavica, all with bicentric distributions in Norway today. 相似文献
19.
Pollen, sedimentological and charcoal particle analyses are presented from Devensian Late-glacial and early- to mid-Flandrian deposits from a former lake in the Vale of Pickering, Yorkshire. The combined analytical methods provide evidence for a short-lived climatic deterioration towards the end of the Late-glacial Interstadial, followed by a brief recovery prior to the Loch Lomond Stadial. This deterioration may be correlated with one of the ‘pre-Younger Dryas’ cooling periods identified not only in other pollen sequences from Britain and Europe, but from such diverse sources as Foraminifera from the Norwegian Sea and electrical conductivity measurements from the Greenland ice sheet. Loss-on-ignition and magnetic susceptibility data suggest that the Loch Lomond Stadial was characterised by an initial prolonged temperature decline, followed by a sudden more severe downturn resulting in particularly intense solifluction. Radiocarbon accelerator dating of the early Flandrian marl deposits illustrates the problem of age determination in calcareous lakes, and an estimate of the magnitude of ‘hard water error’ is obtained. The local population expansion of Alnus glutinosa is dated to 7640 ± 85 yr BP, but there is possible evidence for a Late-glacial presence of the tree, the significance of which is discussed in relation to other sites in east Yorkshire. © 1996 John Wiley & Sons, Ltd. 相似文献
20.
The comparison of pollen diagrams and their inferred vegetational histories are an important component of palaeoecological research. Radiocarbon-dated pollen profiles from three cores taken from two adjacent mires located in northern Cumbria, Bolton Fell Moss and Walton Moss, have been used to reconstruct the Late Holocene vegetation history between the Bronze Age and the present day. The profiles have been interpreted in the light of available archaeological and historical records and, although the pollen records are broadly similar, there are some notable differences between them, particularly during Iron Age and medieval times. Dissimilarities between the diagrams are explored numerically, and the statistical and palynological results are discussed in relation to pollen representativity. The results suggest that it may be advantageous to construct more than one pollen diagram from a mire, or even adjacent mires, as extra-local pollen may be a more important part of the pollen rain than previously envisaged. © 1998 John Wiley & Sons, Ltd. 相似文献