首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   

2.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   

3.
The objective of this study was to determine if exploitative competition between between juvenile Chinook salmon (Oncorhynchus tshawytscha) and threespine stickleback (Gasterosteus aculeatus) reduces the foraging opportunity of juvenile Chinook salmon in tidal channels of the Columbia River estuary. We sampled Chinook salmon and stickleback diets monthly and over a diel cycle in spatially distinct emergent marshes of the Columbia River estuary. Diets of the two fish species did not differ among marsh systems, but both fish species exhibited diel and seasonal differences in diet composition. Diet overlap between the two fish species was greatest in March and June. Exploitative competition was unlikely based on a comparison between consumption rates and estimated invertebrate production.  相似文献   

4.
The goal of this study was to determine the food web pathways supporting juvenile Chinook (Oncorhynchus tshawytscha) salmon in the Columbia River estuary through multiple stable isotope analysis (δ13C, δ15N, δ34S). Using this method, we distinguished the role of various organic matter sources in Chinook food webs and interpreted the dynamics of their use both spatially and temporally within the estuary. Our results indicate that subyearling Chinook are associated with fluvial, anthropogenic, estuarine, and marine organic matter sources, with hatchery food and vascular plant detritus being the most dominant sources in juvenile Chinook food webs. Although freshwater phytoplankton is involved in many food web pathways to subyearling Chinook, increased phytoplankton production from the impounded river has not replaced the loss of autochthonous marsh production to fish. Our results indicate that large-scale ecosystem alteration may have decreased the availability and quality of food webs in the estuary and potentially diminished the ability of the Columbia to support Chinook salmon.  相似文献   

5.
The ecological significance of algal and seagrass wrack subsidies has been well-documented for exposed-coast sandy beaches but is relatively unstudied in lower-energy and mixed-sediment beaches. In marine nearshore environments where beaches are fringed with riparian vegetation, the potential for reciprocal subsidies between marine and terrestrial ecosystems exists. Within the marine-terrestrial ecotone, upper intertidal “wrack zones” accumulate organic debris from algae, seagrass, and terrestrial plant sources and provide food and shelter for many organisms. Human modification also occurs within this ecotone, particularly in the form of armoring structures for bank stabilization that physically disrupt the connectivity between ecosystems. We conducted detailed wrack and log surveys in spring and fall over 3 years at 29 armored–unarmored beach pairs in Puget Sound, WA, USA. Armoring lowered the elevation of the interface between marine and terrestrial ecosystems and narrowed the width of the intertidal transition zone. Armored beaches had substantially less wrack overall and a lower proportion of terrestrial plant material, while marine riparian zones (especially trees overhanging the beach) were an important source of wrack to unarmored beaches. Armored beaches also had far fewer logs in this transition zone. Thus, they lacked biogenic habitat provided by logs and riparian wrack as well as the organic input used by wrack consumers. Results such as these that demonstrate armoring-associated loss of connectivity across the marine-terrestrial ecotone may be useful in informing conservation, restoration, and management actions.  相似文献   

6.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

7.
The hazard posed by a rip current depends in part on the ability of beach users to identify a rip current and to associate surf conditions with the potential for rip currents. Understanding which visual features beach users associated with rip currents is an important step in the development of appropriate programs and educational materials aimed at improving the ability of beach users to identify a rip current. A face-to-face survey (n = 392) was conducted to assess the ability of beach users to identify a rip current using five near eye-level photographs that simulate the view of the beach and surf zone as the respondent approached the beach. The survey was conducted on three heavily used public beaches in Texas (Galveston, Port Aransas, and Corpus Christi) at the height of the summer beach season in 2012. Only 13 % of respondents correctly selected the photograph showing the most hazardous conditions and correctly identified the precise location of the rip current on the photograph. The majority of beach users (87 %) incorrectly indicated that the photograph with the heaviest surf represented the most hazardous surf conditions and greatest potential for the development of rip currents, or failed to identify rip currents in photographs. Respondents who were able to correctly identify the rip current tended to recognize the breaking wave pattern, areas of darker water, or the proximity to structures as key visual characteristics of rip currents and also had higher self-reported abilities to swim in rough water and escape a rip current.  相似文献   

8.
Tropical coastal seascapes are biodiverse and highly productive systems composed of an interacting mix of habitats. They provide crucial ecosystem services that support people’s livelihoods, yet key components of these seascapes remain unstudied. We know little about the deep (>2 m) subtidal areas of tropical estuaries, because, due to gear restrictions, there have been no detailed studies of the habitats they contain and the fish that use them. Consequently, potentially important functions and linkages with surrounding habitats remain unknown. Using unbaited videos, an approach capable of sampling the full breadth of benthic habitats and whole fish assemblages, we investigated patterns of fish occupancy of the deep subtidal habitats (2–20 m) in one of Australia’s largest tropical estuaries. We identified 19 taxa not previously recorded from estuaries of tropical eastern Australia, along with 36 previously identified estuary taxa. Three recognisable fish assemblages were associated with distinct benthic habitat types: open bottom fine sediment, seagrass and structurally complex rocky areas. In deep water, habitats often overlooked in shallow water become important, and there are sharp differences in habitat function. Deep subtidal habitats are potentially an important zone for direct interaction between estuary and marine fauna, with a range of consequences for intertidal habitat use and nursery ground functioning. The interface between marine areas and the shallow-water estuary may be richer and more complex than previously recognised.  相似文献   

9.
In a long-term, spatially comprehensive beam trawl survey of the Navesink River-Sandy Hook Bay estuary, the blue crabCallinectes sapidus was one of the most abundant species. Seasonal changes in abundance were evident, with low abundances in summer followed by peak abundances in the fall, after juveniles recruited to the estuary. We saw no long-term trends in abundance during the 5 yr study. Location in the navesink River or Sandy Hook Bay explained most of the variance in abundance within any one survey. In diet analyses, we found evidence of cannibalism in all seasons, but in the size range of crabs caught in this study (10–180 mm), we did not find a relationship between cannibalism and juvenile crab abundance. Within surveys, crabs divided into 20 mm size categories showed no sizerelated differences in location within the estuary or among 7 habitat types examined (algae bed, amphipod bed, beach, channel, marsh edge, mid-depth, and sandbar). Channels and sandbars tended to exhibit lower crab abundance than other habitats. Shallow habitats with and without cover were equally preferred by juvenile blue crabs, implying that the presence of structure was not critical. Spatial models of crab abundance (<- 80 mm carapace width) to environmental data were fit from several seasons of intensive sampling in the Navesink River-Sandy Hook Bay estuary between summer 1996 and spring 1998. These models indicated that fine-grained sediments, tmmperature, depth, and salinity were good indicators of crab abundance in spring, summer, and fall. Using these spatial models and environmental data collected in subsequent seasons (summer 1998−fall 1999), we were able to predict blue crab abundance in the river as evidenced by significant correlations between predicted and observed abundances. For the size range of crabs examined here, physical conditions may be as important as structural habitat types or cannibalism in determining habitat use in northerly estuaries.  相似文献   

10.
An average of 230,000 cubic meters of sand is provided to the beaches of northern Monterey Bay each year by littoral transport from upcoast and from local river input. Two jetties constructed as part of a small craft harbor interrupted the littoral flow of sand and significantly altered the area's natural coastal processes. A wide protective beach immediately formed upcoast against a formerly retreating beach cliff. Sand now filling the harbor mouth each winter has led to expensive yearly dredging as well as seasonally or permanently depleted downcoast beaches. Seacliff retreat, always a problem in the area, is caused primarily by surf attack of weaker stratigraphic units and erosion along joint sets and faults, causing collapse of the bluffs. The seasonal loss of protective beaches has led to a two- to three-fold increase in the rate of downcoast cliff retreat following harbor construction except where protective rip-rap has been emplaced by property owners.  相似文献   

11.
The littoral fringe ranging between the capes of Bizerte and Ras Ettarf (north-eastern of Tunisia) represents an unstable and complex system of the Tunisian littoral. The instability of this zone is dependent, on one hand, on natural phenomena contributing to the destabilization of certain sectors to which are added the induced effects of anthropic factors on the other hand. This study was carried out from grain size analysis and a simulation of swell plans. This led the authors to highlight the increasing grain size classification from the zones of the Capes towards the sandy low coasts and to quantify the moved volumes under the effect of the dominant swells in order to simulate the fattening and erosion zones in this sector. A littoral transit of direction north–south is able to transport 45,000 m3/year of sediment which are participating in the fattening of the beach of Sidi Salem; 6,000 m3/year of sandy sediments are directed towards the beach of R'mel and 12,000 m3/year are participating in the fattening of the beaches of Chatt Mami (Ras Jebel) and Lahmmari (Raf Raf).  相似文献   

12.
Reef fishes, such as gray snapper, support important recreational and commercial fisheries and use a variety of habitats throughout ontogeny. Gray snapper juveniles may be found in estuarine nursery areas, such as seagrass beds, or mangrove shorelines, while adults are most often found in deep channels and farther offshore, associated with hard-bottom habitats. Juvenile and subadult gray snapper were collected from 1996 through 2009 during long-term fishery-independent monitoring of several estuarine systems along the Gulf and Atlantic coasts of Florida. Indices of abundance and habitat suitability were constructed for gray snapper to determine size-specific relationships between abundance, habitat, and environmental conditions. Juvenile and subadult gray snapper were collected year-round only in the southernmost estuaries but were most common from July through December in all estuaries sampled. In addition to timing of estuarine occupancy, abundance varied with latitude; gray snapper were more frequently collected in warmer, southern estuaries. In general, gray snapper were most abundant in euhaline areas with a high percentage of submerged aquatic vegetation (SAV) and, in most cases, where overhanging shoreline vegetation was also present. Annual abundance varied over the sampling period, with some juvenile peaks in abundance translating to subadult peaks in subsequent years. Although strong correspondence between juvenile and subadult populations was not observed in all systems, long-term, broad-scale habitat selection patterns as described in this study are critical to more effectively assess populations of estuarine-dependent species.  相似文献   

13.
The ichthyofauna of the Sundays Estuary was investigated by monthly seine netting over a period of a year. Forty-seven species were captured though 23 of these were represented by a total catch of less than 25 specimens each. The small clupeidGilchristella aestuarius was numerically dominant and constituted 80%, of the catch. The study confirms that in addition to this species, two species of goby,Caffrogobius multifasciatus andPsammogobius knysnaensis and the soleSolea bleekeri complete their life cycles in the estuary. Many other species such as mullet, utilize the estuary as a juvenile nursery area. First year juveniles ofRhabdosargus holubi, Lithognathus lithognathus, Pomadasys commersonni andMonodactylus falciformis, by virtue of their abundance in the Sundays Estuary and other South African estuaries, and their absence from other coastal environments, appear to be dependent on estuaries as juvenile nursery areas.  相似文献   

14.
Detrital sand grains from three beaches (Tecolutla, Nautla, and Veracruz) along the western Gulf of Mexico were studied by a scanning electron microscope, to investigate the depositional environment and paleoclimate. Totally, 24 microtextures are identified; among them, 13 are grouped as mechanical origin, 5 as mechanical and/or chemical origin, and 6 as chemical origin. These microtextures are nonuniformly distributed among the three beach areas. Concoidal fractures, straight and arcuate steps at Tecolutla and Veracruz beaches indicate that the sand grains were derived from the crystalline rocks. The abundance of angular outline grains at the Nautla beach supports for short transportation probably close to the source area. The domination of rounded sand grains in the Veracruz beach reveals that the sediments were derived by the aeolian mechanism. Chattermark trials at the Veracruz beach sands are indicating a wet tropical climate. Chemical features like silica globules, silica pellicle, and trapped diatoms in the Tecolutla and Veracruz beach sands suggest a silica saturated environment. Similarly, chemical etching and solution pits are common in the Veracruz beach sands, which are probably linked to the contaminated sea water. Desiccation crack at Veracruz beach sands is an indicator of temperature changes in the beach environment. Broken benthonic foraminifera Elphidium discoidale sp. present in the Veracruz beach indicates a high-energy littoral environment.  相似文献   

15.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

16.
Larval fish use of surf zone and nearshore habitats at northern latitudes has received little attention. Consequently, potential impacts of beach nourishment and other forms of disturbance are not well understood. This study, on a northwestern Atlantic coastline spanning May through July over 4 years, demonstrates that recently hatched larvae are common in both surf zone and nearshore habitats. Taxonomic compositions of surf zone and nearshore assemblages were similar to each other and those from an adjacent estuary. An influence of upwelling events was apparent in coincident changes in abundance and/or size of several species in the surf zone. Other changes over the late spring–summer transition, including buoyancy-driven flows from the Hudson River plume, demonstrate the dynamic nature of larval fish assemblages in the New York Bight area.  相似文献   

17.
Our study was designed to examine early life stage tarpon (Megalops atlanticus) recruitment, habitat use, and residency in coastal environments near the northern limit of their distribution in the western Atlantic Ocean. We employed a multi-faceted approach to (1) collect ingressing larval tarpon on nighttime flood tides at multiple sites, (2) document larval and juvenile tarpon use of natural high marsh pools, and (3) examine juvenile tarpon movement and behavior in managed marsh impoundments, all in the North Inlet-Winyah Bay estuarine system of South Carolina, USA. The timing of recruitment (June through November) and size of larvae (mean ± standard deviation = 23 ± 3 mm standard length [SL]) during estuarine ingress was similar to that reported from other subtropical locations in the region. Soon after recruiting into the system, larval and small juvenile tarpon (47 ± 25 mm SL) co-occurred in high marsh pools from July to November, and large juveniles (201 ± 34 mm SL) were also present in marsh impoundments during this same time period. An increase in tarpon length over time during their residency in high marsh pools and the relatively large size they attain in marsh impoundments indicate these environments may function as favorable nursery habitats. As water temperatures decreased during October and November, juvenile tarpon emigrated from these estuarine habitats. Tarpon appear to use a variety of estuarine habitats in coastal South Carolina from summer through late fall during their early life stage development. The fate of these individuals after they leave estuarine habitats at the onset of winter in this region is currently unknown.  相似文献   

18.
The sediments of the estuaries and offshore Tuticorin along the southern coast of Tamil Nadu were studied for their textural variation. Ninety sediment samples were collected from three sectors (river, estuary, offshore) on the basis of prevailing energy conditions and oceanographic parameters. Frequency curves show unimodal to bimodal in nature. Offshore samples also fall in bimodal with medium and fine sand where sediment is additionally deposited by the Tamiraparani River. The mean values ranging from 1.69 to 2.01 φ with medium to fine sand. The fine sand in the riverine region indicates the depositional nature of the sediments. In pre-monsoon, the standard deviation ranges from 0.29 to 0.81 φ, which falls in the very well sorted to moderately well sorted. Estuary ranges from 0.63 to 1.30 φ, with moderately sorted, whereas in the marine sediments ranges from 0.4 to 1.01 φ, with moderately to moderately well- sorted and some patches of poorly sorted is observed. In both monsoons, the grain size variations are mostly influenced in river and offshore samples compared to the estuaries. The CM pattern indicates the deposition of sediments in graded suspension. In estuary, the sediments are medium sand with moderately to poorly sorted, fine skewed which are indicative of denudation processes taking place there. In marine, the sediments are medium-to-fine, moderately-to-well sorted, and fine skewed to very fine skewed sediments, probably as a result of the influence of palaeo-sediments deposited by rivers from inland as well as by waves and currents from offshore. Further, the marine samples also highlight depositional processes.  相似文献   

19.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号