首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High fluoride and arsenic concentrations in groundwater have led to serious health problems to local inhabitants at Yuncheng basin, Northern China. In this study, groundwater with high fluoride and arsenic concentration at Yuncheng basin was investigated. A majority of the samples (over 60%) belong to HCO3 type water. The predominant water type for the shallow groundwater collected from southern and eastern mountain areas was Ca/Mg-Ca-HCO3 types. For the shallow groundwater from flow through and discharge area it is Na-HCO3/SO4-Cl/SO4/Cl type. The predominant water type for the intermediate and deep groundwater is of Na/Ca/Mg-Ca-HCO3 type. According to our field investigation, fluoride concentration in groundwater ranges between 0.31 and 14.2 mg/L, and arsenic concentration ranges between 0.243 and 153.7 μg/L. Out of seventy collected groundwater samples, there are 31 samples that exceed the World Health Organization (WHO) standard of 1.5 mg/L for fluoride, and 15 samples exceeds the WHO standard of 10 μg/L for arsenic. Over 40% of high fluoride and arsenic groundwater are related to the Na-HCO3 type water, and the other fifty percent associated with Na-SO4-Cl/HCO3-SO4-Cl type water; little relation was found in calcium bicarbonate type water. A moderate positive correlation between fluoride and arsenic with pH were found in this study. It is due to the pH-dependent adsorption characteristics of F and As onto the oxide surfaces in the sediments. The observed negative correlation between fluoride and calcium could stem from the dissolution equilibrium of fluorite. The high concentration of bicarbonate in groundwater can serve as a powerful competitor and lead to the enrichment of fluoride and arsenic in groundwater. Most of the groundwater with high fluoride or arsenic content has nitrate content about or over 10 mg/L which, together with the observed positive correlations between nitrate and fluoride/arsenic, are indicative of common source of manmade pollution and of prevailing condition of leaching in the study area.  相似文献   

2.
The dental and skeletal fluorosis is highly prevalent in Zhijin, Guizhou, especially at Hualuo Village, Hehua Village and Majiazhuang Village. The contents of fluorine in coal, clay used for coal combustion, mixed fuel of coal and clay, corn, and chili from households of the three villages were determined by the pyrohydrolysis-fluorine ion-selective electrode method. The average contents of fluorine in the above samples respectively are 237 mg/g, 2262 mg/g, 828 mg/g, 1419 mg/g, and 110 mg/g. The clay used for coal combustions is the main fluorine source of endemic fluorosis and the inferior coal and weathered coal are the secondary source of fluorine. During the combustion of mixed fuel of coal and clay, about eighty percent of fluorine was volatilized, approximately two thirds of which was from the clay and the other one third from the coal. The occurrence of fluorine in clay used for coal combustion is closely related to apatite and hornblende. The contents of fluorine in corn and chili, dried by coal-clay mixed fuel are about 1400 and 73 times higher than the permitted level of fluorine in foods according to the Chinese Standard. It is worth paying attention to the high-fluorine indoor surroundings, such as coal, clay, corn, and chili, particularly ash from boiler bottom with the fluorine content of 15738 μg/g. Besides the technologies of fluorine fixation during the combustion,  相似文献   

3.
4.
江西德安吴山地区地方性氟中毒区域存在高氟的地球化学异常。富氟的岩(矿)石为其原生源,受表生地质作用和人为活动的影响,在土壤、水和生物体中形成了富氟的生态地球化学环境系统。研究发现,该地区氟进入人体主要通过5个途径,其中食物是进人人体最主要途径,食物中的氟元素超标情况严重,其次是通过饮用水进入人体,并根据这些规律提出德安地方性氟中毒病几点防治建议。  相似文献   

5.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

6.
Spatial variations of fluoride concentration in groundwater in the town of Saldungaray, Argentina affect water quality for human supply and decrease the aquifer reserves. The study region is a piedmont area, located near a hill area (west) and the fluvial valley of the Sauce Grande River (east). Two hydrogeological units can be identified: bedrock and clastic sediments. These sediments consist of sandy silt with a variable amount of calcium carbonate. Its greatest thickness occurs near the river where it is 60 m. Groundwater flow coincides with topography. Fresh water is exploited from this unit and it has low salt contents (dissolved solids 400 to 800 mg/l). Fluoride concentration varies between 0.2 and 5 mg/l. The groundwater flow and hydrogeological characteristics related to spatial variations of fluoride content are analyzed. The quality of water is a critical parameter in determining the overall quality of human lives, and the occurrence of high fluoride concentrations can have a pronounced impact on groundwater quality.  相似文献   

7.
Fluoride incidence in groundwater in an area of Peninsular India   总被引:9,自引:0,他引:9  
Groundwater samples were collected from Anantapur District, Andhra Pradesh, India. The district is mainly underlain by Peninsular Gneisses of Archaean age. The samples were analysed for fluoride (F) along with other chemical parameters. The results suggest that the main sources of F in groundwater in the district are the country rocks, in which fluorine is strongly absorbed in soils consisting of clay minerals. A strong positive correlation between F and lithogenic sodium reflects weathering activity. This is responsible for the leaching of F, which is also caused by the semi-arid climate and intensive irrigation in the area. An alkaline environment of circulating water in the investigated area mainly facilitates leaching of Ffrom the soils, contributing to high F-containing groundwater. A longer residence time of water in the aquifer zone, caused by a high rate of evapotranspiration and a weathered zone of low hydraulic conductivity, which promotes the dissolution of fluorine-bearing minerals, is another factor that further increases the Fcontent in groundwater. Suggestions are made to improve groundwater quality and, thus, the health status of the population.  相似文献   

8.
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Thirty groundwater samples have been collected from Razan area (Hamadan, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The chemical compositions of the groundwater are dominated by Na+, Ca2+, HCO3 , Cl and SO4 2−, which have been derived largely from natural chemical weathering of carbonate, gypsum and anthropogenic activities of fertilizer’s source. The production of SO4 2− has multiple origins, mainly from dissolution of sulphate minerals, oxidation of sulphide minerals and anthropogenic sources. The major anthropogenic components in the groundwater include Na+, Cl, SO4 2− and NO3 , with Cl and NO3 being the main contributors to groundwater pollution in Razan area.  相似文献   

9.
Aji-Chay River is one of the most important surface reservoirs of northwest of Iran, because it passes through Tabriz city and discharges to Urmia Lake, one of the largest permanent salty lakes in the world. The main objectives of the present study are to evaluate its overall water quality and to explore its hydrogeochemical characteristics, including the potential contamination from heavy metals and metalloids such as Co, Pb, Zn, Cd, Cu, Cr, Al and As. For this purpose, 12 water samples were collected from the main river body and its tributaries within Tabriz plain. The Piper diagram classified water samples mainly into Na–Cl and secondary into Ca–HCO3 and mixed Ca–Mg–Cl types, denoting a profound salinization effect. The cross-plots showed that natural geochemical processes including dissolution of minerals (e.g., carbonates, evaporites and silicates), as well as ion exchange, are the predominant factors that contribute to fluvial hydrogeochemistry, while anthropogenic activities (industrial and agricultural) impose supplementary effects. Cluster analysis classified samples into two distinct clusters; samples of cluster B appear to have elevated electrical conductivity (EC) values and trace metals concentrations such as Co, Pb and Cd, while SiO2 and Zn are low in comparison with the samples of the cluster A. The main processes controlling Aji-Chay River hydrogeochemistry and water quality were identified to be salinization and rock weathering. Both are related with geogenic sources which enrich river system with elevated values of Na+, Cl?, Ca2+, Mg2+, K+, SO4 2? and EC as a direct effect of evaporites leaching and elevated values of Pb and Cd as an impact from the weathering process of volcanic formations. According to the US salinity diagram, all of the water samples are unsuitable for irrigation as having moderate to bad quality.  相似文献   

10.
Groundwater is the major source of freshwater in region devoid of surface water resources. Once such region is the Morappur area, Dharmapuri district of Tamilnadu, wherein groundwater is major source of water for all purposes. The area is reported to be severely affected by fluorosis due to excessive Fluoride in groundwater. The area comprises of rocks of Archaean age, namely Charnockite, Epidote Hornblende Gneiss and ultramafic rocks. The area has experienced numerous tectonic disturbances in which numbers of vertical joints have developed and are filled with quartz/feldspathic veins, and highly mineralised. Two aquifer systems have been identified in the area, namely the weathered aquifer and fractured aquifer. In order to understand the factors controlling high Fluoride concentration in groundwater, 149 groundwater samples were collected during pre and post-monsoon period. Analytical results indicate that 35% groundwater samples show Fluoride concentration more than 1.5 ppm (permissible limit). Results indicate that both the aquifer units are affected by high Fluoride and deeper aquifers are more affected. Biotite and Hornblende minerals present in the area and interact with groundwater to release Calcium, Magnesium along with Fluoride. Further chloro-alkaline indices indicate that calcium ions are replaced by sodium due to reverse ion exchange, leading to high concentration of Fluoride along with high concentration of Sodium. Government has taken measures to provide Fluoride-free drinking water from distant surface water sources. However, it is important to follow certain water management methods to improve the groundwater quality.  相似文献   

11.
贵州西部氟中毒地区氟来源地质背景研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贵州省西部广泛分布上二叠统煤系地层,燃煤型氟中毒严重影响当地居民的身体健康。引起氟中毒的氟是多来源的,影响氟中毒的因素是多方面的。高氟含量的岩石粘土岩、煤、页岩等是氟的初始来源体;高氟含量土壤是氟第二个层次的来源;高氟含量土壤中种植的农作物是第三个层次的来源;燃煤烟尘直接排放室内空气中和用燃煤烘烤食物等,使空气、食物和水中氟含量增高,是一重要的人为氟来源。人通过呼吸高氟含量的空气和食(饮)用高氟含量的食物(水)将氟沉淀在体内,造成氟中毒。  相似文献   

12.
The Fars area is the main target for Permian gas exploration in the Zagros fold belt. It contains approximately 15 percent of the world’s proven gas reserves. The geometrical characteristics of the folded structures change dramatically across the N–S trending Gavbandi High. We used seismic profiles, well data, magnetic survey information and field observations to show that thickness variation of the sedimentary pile inherited from basement geometry is the main reason behind structural style variation in this area which occurred during the Zagros folding. Differences in thickness were more significant in Early-Middle Paleozoic time and decreased considerably upward in time. The total thickness of the Lower Paleozoic succession in the eastern side of the Gavbandi High is approximately 40–50% thicker than on the summit of this basement high. Sedimentary pinch-outs through Cretaceous and Tertiary times indicate that the activity of the basement faults decreased but did not stop. The impact on hydrocarbon traps of the pre-folding basin architecture and the differences in the behavior of the sedimentary cover after Miocene folding is discussed and documented.  相似文献   

13.
Hydrogeochemistry and environmental isotope data were utilized to understand origin, geochemical evolution, hydraulic interconnection, and renewability of groundwater in Qingshuihe Basin, northwestern China. There are four types of groundwater: (1) shallow groundwater in the mountain front pluvial fans, originating from recent recharge by precipitation, (2) deep paleo-groundwater of the lower alluvial plains, which was formed long ago, (3) shallow groundwater in the lower alluvial plains, which has undergone evaporation during the recharge process, and (4) mixed groundwater (shallow and deep groundwater in the plain). The main water types are Na–HCO3, which dominates type (1), and Na–SO4, which dominates types (2) and (3). Geochemical evolution in the upper pluvial fans is mainly the result of CO2 gas dissolution, silicates weathering and cation exchange; in the lower alluvial plains, it is related to mineral dissolution. The evaporative enrichment only produces significant salinity increases in the shallow groundwater of the lower alluvial plains. Shallow groundwater age in the upper plain is 10 years or so, showing a strong renewability. Deep groundwater ages in the lower plain are more than 200 years, showing poor renewability. In the exploitation areas, the renewability of groundwater evidently increases and the circulation period is 70–100 years.  相似文献   

14.
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   

15.
Fluoride contamination in groundwater resources of Alleppey,southern India   总被引:1,自引:0,他引:1  
Alleppey is one of the thickly populated coastal towns of the Kerala state in southern India.Groundwater is the main source of drinking water for the 240,991 people living in this region.The groundwater is being extracted from a multi-layer aquifer system of unconsolidated to semi-consolidated sedimentary formations,which range in age from Recent to Tertiary.The public water distribution system uses dug and tube wells.Though there were reports on fluoride contamination,this study reports for the first time excess fluoride and excess salinity in the drinking water of the region.The quality parameters,like Electrical Conductivity(EC) ranges from 266 to 3900 μs/cm,the fluoride content ranges from 0.68 to2.88 mg/L,and the chloride ranges between the 5.7 to 1253 mg/L.The main water types are Na-HC03,NaCO_3 and Na-Cl.The aqueous concentrations of F~- and CO_3~(2-) show positive correlation whereas F~- and Ca~(2+) show negative correlation.The source of fluoride in the groundwater could be from dissolution of fluorapatite,which is a common mineral in the Tertiary sediments of the area.Long residence time,sediment-groundwater interaction and facies changes(Ca-HCO_3 to Na-HCO_3) during groundwater flow regime are the major factors responsible for the high fluoride content in the groundwater of the area.High strontium content and high EC in some of the wells indicate saline water intrusion that could be due to the excess pumping from the deeper aquifers of the area.The water quality index computation has revealed that 62%of groundwater belongs to poor quality and is not suitable for domestic purposes as per BIS and WHO standards.Since the groundwater is the only source of drinking water in the area,proper treatment strategies and regulating the groundwater extraction are required as the quality deterioration poses serious threat to human health.  相似文献   

16.
Hydrogeochemical assessment of groundwater in Isfahan province, Iran   总被引:2,自引:2,他引:0  
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions.  相似文献   

17.
Dental fluorosis occurs because of fluoride over-absorption during tooth calcification and maturation. We studied fluoride concentration in water and soil samples of the Koohbanan region in Kerman province of southeastern Iran and the effects of calcium chloride and gypsum treatments in decreasing the amount of fluoride in water samples of this region. The results indicate that the high amount of fluoride in the water samples of Koohbanan region is not in agreement with the recommended amount of fluoride concentration for drinking water by World Health Organization (that is 1–1/5 mg/l). Applying calcium chloride and gypsum treatments decreased the amount of fluoride in the water samples showing that utilizing calcium chloride (6 mg/l) or gypsum (12 mg/l) can lower the fluoride concentration in the water samples of Koohbanan, and thus solve the observed dental fluorosis problem.  相似文献   

18.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:3,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

19.
Study of the groundwater samples from Tajarak area, western Iran, was carried out in order to assess their chemical compositions and suitability for agricultural purposes. All of the groundwaters are grouped into two categories: relatively low mineralized of Ca–HCO3 and Na–HCO3 types and high mineralized waters of Na–SO4 and Na–Cl types. The chemical evolution of groundwater is primarily controlled by water–rock interactions mainly weathering of aluminosilicates, dissolution of carbonate minerals and cation exchange reactions. Calculated values of pCO2 for the groundwater samples range from 2.34 × 10−4 to 1.07 × 10−1 with a mean value of 1.41 × 10−2 (atm), which is above the pCO2 of the earth’s atmosphere (10−3.5). The groundwater is oversaturated with respect to calcite, aragonite and dolomite and undersaturated with respect to gypsum, anhydrite and halite. According to the EC and SAR the most dominant classes (C3-S1, C4-S1 and C4-S2) were found. With respect to adjusted SAR (adj SAR), the sodium (Na+) content in 90% of water samples in group A is regarded as low and can be used for irrigation in almost all soils with little danger of the development of harmful levels of exchangeable Na+, while in 40 and 37% of water samples in group B the intensity of problem is moderate and high, respectively. Such water, when used for irrigation will lead to cation exchange and Na+ is adsorbed on clay minerals while calcium (Ca2+) and magnesium (Mg2+) are released to the liquid phase. The salinity hazard is regarded as medium to high and special management for salinity control is required. Thus, the water quality for irrigation is low, providing the necessary drainage to avoid the build-up of toxic salt concentrations.  相似文献   

20.
The occurrence of fluoride in ground water is the focus of the public and has attracted the attention of many scientists all over the world due to its importance in public health. Deficiency or increase of fluoride uptake is considered a public health problem due to the narrow permissible limit which should not exceed 1.5 mg/l according to the World Health Organization (WHO). The range of fluoride tolerance and toxicity is narrow. Deviation from the optimal levels therefore results in dental health effects such as caries and fluorosis. Many studies have found fluorosis to be invariably associated with high concentrations of fluoride in drinking water. Fluorosis is a considerable health problem in many areas of the world including Brazil, China, East Africa, Ghana, India, Kenya, Korea, Malawi, Mexico, Pakistan, South Africa, southeastern Korea, Spain, Sri Lanka, Sudan, Taiwan, Tanzania, and Turkey. Fluoride in groundwater of Quaternary aquifer of the Nile Valley, Egypt, does not gain the attention of the authors in the Nile Valley which makes the public health status of fluoride is not certain. The present work aims at investigating the fluoride concentration of Quaternary groundwater aquifer at Luxor as a representative area of the Nile Valley to be a base line for subsequent studies and criteria for public health. Ground water samples were collected from Quaternary groundwater aquifer at Luxor area, Egypt and analyzed for the purpose of investigating fluoride content. The results showed that fluoride concentration in the study area ranges between 0.113 and 0.452 with an average of 0.242 mg/l. Sources of fluoride in the study area can result from the natural dissolution from fluoride-rich minerals, fertilizers and from groundwater recharge. It is worth mentioning that low fluoride content in the study area is considered a public health threat specially limited growth, fertility, and dental caries. Corrective measures should be taken to avoid the public health impacts of fluoride deficiency at Luxor area as well as similar areas in the Nile Valley. A public health program should be initiated to account for the deficiency of fluoride in groundwater and deal with the other supplementary fluoride sources in food or fluoridation of drinking water supplies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号