共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
I.A. Yegorova A. Babic P. Salucci K. Spekkens A. Pizzella 《Astronomische Nachrichten》2011,332(8):846-853
We have investigated the stellar light distribution and the rotation curves of high‐luminosity spiral galaxies in the local Universe. The sample contains 30 high‐quality extended Hα and H I rotation curves. The stellar disk scale‐length of these objects was measured or taken from the literature. We find that in the outermost parts of the stellar disks of these massive objects, the rotation curves agree with the Universal Rotation Curve (Salucci et al. 2007), however a few rotation curves of the sample show a divergence (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
Kanak Saha Roelof de Jong Benne Holwerda 《Monthly notices of the Royal Astronomical Society》2009,396(1):409-422
We analyse warps in the nearby edge-on spiral galaxies observed in the Spitzer /Infrared Array Camera (IRAC) 4.5-μm band. In our sample of 24 galaxies, we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 galaxies. The dark matter distribution in each of these galaxies are calculated using the mass distribution derived from the observed light distribution and the observed rotation curves. The theoretical predictions of the onset radii for the warps are then derived by applying a self-consistent linear response theory to the obtained mass models for six galaxies with rotation curves in the literature. By comparing the observed onset radii to the theoretical ones, we find that discs with constant thickness can not explain the observations; moderately flaring discs are needed. The required flaring is consistent with the observations. Our analysis shows that the onset of warp is not symmetric in our sample of galaxies. We define a new quantity called the onset-asymmetry index and study its dependence on galaxy properties. The onset asymmetries in warps tend to be larger in galaxies with smaller disc scalelengths. We also define and quantify the global asymmetry in the stellar light distribution, that we call the edge-on asymmetry in edge-on galaxies. It is shown that in most cases the onset asymmetry in warp is actually anticorrelated with the measured edge-on asymmetry in our sample of edge-on galaxies and this could plausibly indicate that the surrounding dark matter distribution is asymmetric. 相似文献
5.
Harry I. Ringermacher Lawrence R. Mead 《Monthly notices of the Royal Astronomical Society》2009,397(1):164-171
We describe a new formula capable of quantitatively characterizing the Hubble sequence of spiral galaxies including grand design and barred spirals. Special shapes such as ring galaxies with inward and outward arms are also described by the analytic continuation of the same formula. The formula is r (φ) = A /log [ B tan (φ/2 N )] . This function intrinsically generates a bar in a continuous, fixed relationship relative to an arm of arbitrary winding sweep. A is simply a scale parameter while B , together with N , determines the spiral pitch. Roughly, greater N results in tighter winding. Greater B results in greater arm sweep and smaller bar/bulge, while smaller B fits larger bar/bulge with a sharper bar/arm junction. Thus B controls the 'bar/bulge-to-arm' size, while N controls the tightness much like the Hubble scheme. The formula can be recast in a form dependent only on a unique point of turnover angle of pitch – essentially a one-parameter fit, aside from a scalefactor. The recast formula is remarkable and unique in that a single parameter can define a spiral shape with either constant or variable pitch capable of tightly fitting Hubble types from grand design spirals to late-type large barred galaxies. We compare the correlation of our pitch parameter to Hubble type with that of the traditional logarithmic spiral for 21 well-shaped galaxies. The pitch parameter of our formula produces a very tight correlation with ideal Hubble type suggesting it is a good discriminator compared to logarithmic pitch, which shows poor correlation here similar to previous works. Representative examples of fitted galaxies are shown. 相似文献
6.
P. Tsoutsis C. Efthymiopoulos N. Voglis † 《Monthly notices of the Royal Astronomical Society》2008,387(3):1264-1280
In a previous paper (Voglis et al., Paper I), we demonstrated that, in a rotating galaxy with a strong bar, the unstable asymptotic manifolds of the short-period family of unstable periodic orbits around the Lagrangian points L 1 or L 2 create correlations among the apocentric positions of many chaotic orbits, thus supporting a spiral structure beyond the bar. In this paper, we present evidence that the unstable manifolds of all the families of unstable periodic orbits near and beyond corotation contribute to the same phenomenon. Our results refer to a N -body simulation, a number of drawbacks of which, as well as the reasons why these do not significantly affect the main results, are discussed. We explain the dynamical importance of the invariant manifolds as due to the fact that they produce a phenomenon of 'stickiness' slowing down the rate of chaotic escape in an otherwise non-compact region of the phase space. We find a stickiness time of the order of 100 dynamical periods, which is sufficient to support a long-living spiral structure. Manifolds of different families become important at different ranges of values of the Jacobi constant. The projections of the manifolds of all the different families in the configuration space produce a pattern due to the 'coalescence' of the invariant manifolds. This follows closely the maxima of the observed m = 2 component near and beyond corotation. Thus, the manifolds support both the outer edge of the bar and the spiral arms. 相似文献
7.
P. Rautiainen H. Salo E. Laurikainen 《Monthly notices of the Royal Astronomical Society》2008,388(4):1803-1818
We have modelled 38 barred galaxies by using near-infrared and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from H -band photometry, assuming a constant mass-to-light ratio. The halo component we choose corresponds to the so-called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed.
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius, , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour. 相似文献
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius, , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour. 相似文献
8.
Paolo Salucci Irina A. Yegorova Niv Drory 《Monthly notices of the Royal Astronomical Society》2008,388(1):159-164
We derive the disc masses of 18 spiral galaxies of different luminosity and Hubble type, both by mass modelling their rotation curves and by fitting their spectral energy distribution with spectrophotometric models. The good agreement of the estimates obtained from these two different methods allows us to quantify the reliability of their performance and to derive very accurate stellar mass-to-light ratio versus colour (and stellar mass) relationships. 相似文献
9.
N. Voglis P. Tsoutsis C. Efthymiopoulos 《Monthly notices of the Royal Astronomical Society》2006,373(1):280-294
In the presence of a strong m = 2 component in a rotating galaxy, the phase-space structure near corotation is shaped to a large extent by the invariant manifolds of the short-period family of unstable periodic orbits terminating at L 1 or L 2 . The main effect of these manifolds is to create robust phase correlations among a number of chaotic orbits large enough to support a spiral density wave outside corotation. The phenomenon is described theoretically by soliton-like solutions of a Sine–Gordon equation. Numerical examples are given in an N -body simulation of a barred spiral galaxy. In these examples, we demonstrate how the projection of unstable manifolds in configuration space reproduces essentially the entire observed bar–spiral pattern. 相似文献
10.
11.
Mario G. Abadi Ben Moore Richard G. Bower 《Monthly notices of the Royal Astronomical Society》1999,308(4):947-954
We use three-dimensional SPH/ N -body simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott, relating the gravitational restoring force provided by the disc to the ram pressure force, provides a good approximation to the radius at which gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster, such as Coma, will have its gaseous disc truncated to ∼4 kpc, thus losing ∼80 per cent of its diffuse gas mass. The time-scale for this to occur is a fraction of a crossing time ∼107 yr. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intracluster medium, will lose significantly less gas. We conclude that ram pressure alone is insufficient to account for the rapid and widespread truncation of star formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher–Oemler effect. 相似文献
12.
We have imaged a sample of 45 face-on spiral galaxies in the K band, to determine the morphology of the old stellar population, which dominates the mass in the disc. The K -band images of the spiral galaxies have been used to calculate different characteristics of the underlying density perturbation such as arm strengths, profiles and cross-sections, and spiral pitch angles. Contrary to expectations, no correlation was found between arm pitch angle and Hubble type, and combined with previous results this leads us to conclude that the morphology of the old stellar population bears little resemblance to the optical morphology used to classify galaxies. The arm properties of our galaxies seem inconsistent with predictions from the simplest density wave theories, and some observations, such as variations in pitch angle within galaxies, seem hard to reconcile even with more complex modal theories. Bars have no detectable effect on arm strengths for the present sample. We have also obtained B -band images of three of the galaxies. For these galaxies we have measured arm cross-sections and strengths, to investigate the effects of disc density perturbations on star formation in spiral discs. We find that B -band arms lead K -band arms and are narrower than K -band arms, apparently supporting predictions made by the large-scale shock scenario, although the effects of dust on B -band images may contribute towards these results. 相似文献
13.
14.
O. Hernandez † C. Carignan P. Amram L. Chemin O. Daigle 《Monthly notices of the Royal Astronomical Society》2005,360(4):1201-1230
We present the Hα gas kinematics of 21 representative barred spiral galaxies belonging to the BHαBAR sample. The galaxies were observed with FaNTOmM, a Fabry–Perot integral-field spectrometer, on three different telescopes. The three-dimensional data cubes were processed through a robust pipeline with the aim of providing the most homogeneous and accurate data set possible useful for further analysis. The data cubes were spatially binned to a constant signal-to-noise ratio, typically around 7. Maps of the monochromatic Hα emission line and of the velocity field were generated and the kinematical parameters were derived for the whole sample using tilted-ring models. The photometrical and kinematical parameters (position angle of the major axis, inclination, systemic velocity and kinematical centre) are in relative good agreement, except perhaps for the later-type spirals. 相似文献
15.
Natalia Orlova Vladimir Korchagin Nobuhiro Kikuchi Shoken. M. Miyama Aleksei Moiseev 《Astrophysics and Space Science》2003,284(2):739-742
We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample
of spiral galaxies with measured axisymmetric background properties. We report here the results of the simulations for four
galaxies: NGC 488, NGC 628, NGC 1566, and NGC 3938. Using the observed radial distributions for the stellar velocity dispersions
and the rotation velocities we have constructed the equilibrium models for the galactic disks in each galaxy and implemented
two kinds of stability analyses - the linear global analysis and 2D-nonlinear simulations. In general, the global modal approach
is able to reproduce the observed properties of the spiral arms in the galactic disks. The growth of spirals in the galactic
disks can be physically understood in terms of amplification by over-reflection at the corotation resonance. Our results support
the global modal approach as a theoretical explanation of spiral structure in galaxies.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
16.
17.
Eric F. Bell Roelof S. de Jong † 《Monthly notices of the Royal Astronomical Society》2000,312(3):497-520
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy. 相似文献
18.
Eric F. Bell Richard G. Bower 《Monthly notices of the Royal Astronomical Society》2000,319(1):235-254
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult. 相似文献
19.