首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The age of intraplate volcanism in northern Pannonian Basin of Carpathians is revisited using a combination of zircon U/Pb, zircon (U–Th)/He and apatite (U–Th)/He dating techniques, complemented by electron microprobe (EMP) characterisation of dated minerals. A total of six maar structures and diatremes in the South-Slovakian Volcanic Field (SSVF) were dated and the obtained new ages yielded the following key findings: Two isolated maars in SE part indirectly dated by geomorphologic constraints to Late Pleistocene are actually of Pliocene (2.8 ± 0.2 Ma) and Late Miocene (5.5 ± 0.6 Ma) ages. In contrast, two maars in NW part of the study area are of Late Pliocene age (4.1 ± 0.4 and 5.2–5.4 Ma), younger than the Late Miocene age (~6.5 Ma) inferred previously from K/Ar data on the proximal basaltic lava flows. These maars therefore belong to the second volcanic phase that was previously identified only in SE part of the SSVF. In the light of the new geochronologic data, it seems likely that the Pliocene phreatomagmatic eruptions may have occurred along extension-related, NW- and NE-trending orthogonal faults. EMP analyses and imaging revealed an extensive syn- and post-growth metasomatic replacement by dissolution-reprecipitation in the majority of zircons. Abundant silicate melt inclusions in porous metasomatised parts of the zircons are diagnostic of magmatic rather than hydrothermal metasomatism. Consistent ages of the metasomatised and non-metasomatised zones do not indicate disturbance of the U–Pb system during the metasomatism. Enrichment in U and Th loss in the metasomatised zircons are diagnostic of an increasing oxygen fugacity triggered by degassing of the volatile residual melt during the final stages of alkali basalt fractionation. Rare zircon-to-baddeleyite transformation was probably connected with lowered silica activity in carbonated basaltic magmas in south-eastern part of the study area.  相似文献   

2.
Simultaneously in-situ analyses of U–Pb isotopes and trace elements were carried out for zircons, in combination with the in-situ analyses of trace elements in coexisting minerals, from low-T/UHP metagranite in the Dabie orogen. The results provide geochemical evidence for the existence of supercritical fluid during continental subduction-zone metamorphism. The zircons are categorized into three types based on their patterns of REE distribution. Type I zircons show increasing enrichment from La to Lu, with prominent positive Ce anomalies and negative Eu anomalies, which are typical of magmatic zircon. Some of them display regular or blurred oscillatory-zoned texture and apparent 206Pb/238U ages of 341 to 780 Ma, suggesting metamorphic modification by solid-state recrystallization with no significant involvement of metamorphic fluid. Type II zircons share similar Th, U and HFSE contents and REE patterns to Type I zircons. However, they exhibit blurred oscillatory-zoned texture or are unzoned, have apparent 206Pb/238U ages of 348 to 709 Ma, and are LREE-enriched relative to Type I zircons. This suggests that they underwent metamorphic reworking by replacement recrystallization in the presence of metamorphic fluid. The LREE enrichment is due to the presence of microscale LREE-bearing mineral inclusions (such as apatite, monazite or epidote) in the zircons. Type III zircons, representing the majority of the present analyses, are characterized by spongy texture and consistent enrichment of LREE, HREE, Th, U and HFSE relative to Type I zircons. They yield nearly concordant U–Pb ages close to the discordia lower-intercept. The consistent enrichment of trace elements relative to the magmatic zircon indicates involvement of a special UHP metamorphic fluid that has a strong capacity to extract significant amounts of LREE, HREE, Th, U and HFSE from such accessory minerals as allanite, garnet, rutile and zircon. Because these minerals are stable in the field of hydrous melt in granite–water systems, they are not able to be decomposed during the exhumation of deeply subducted continental crust. Thus, a supercritical fluid is suggested to transport the LREE, HREE, Th, U and HFSE in the accessory minerals to recrystallized zircons. The mechanism of dissolution recrystallization is responsible for the spongy texture and the very high concentration of trace elements in this type of metamorphic zircons. Therefore, the action of supercritical fluid is evident under the low-T/UHP metamorphic conditions.  相似文献   

3.
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of the genesis of zircons in their various populations and, correspondingly, the age of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). The three populations of zircons separated from two rock samples comprised xenogenic, magmatic (“gabbroic”), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. The zircons of group I are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and the geochemistry of these zircons is very diverse. The zircons of group II contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons were formed during the late magmatic crystallization of the gabbroids at temperatures of 1150–1160°C, and their U-Pb age of 2389 ± 25 Ma corresponds to this process. The eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that the marginal portions of the prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end member. The zircons of group III contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have an U-Pb age of 1911 ± 9.5 Ma, which corresponds to the age of the overprinted amphibolite-facies metamorphism.  相似文献   

4.
辽西医巫闾山变质核杂岩经历过两阶段演化,晚侏罗世发育了围绕核部医巫闾山岩体周缘展布的长环形韧性剪切带(称为医巫闾山剪切带),早白垩世西侧叠加了北北东走向瓦子峪伸展韧性剪切带.在医巫间山剪切带及其变形下盘中侵入了大量的晚侏罗世花岗岩脉,其所含的锆石包括古老继承锆石、新生岩浆锆石、热液锆石等多种类型.根据锆石阴极发光图像、...  相似文献   

5.
西藏东部类乌齐一带吉塘岩群中新识别出一套花岗质片麻岩。花岗质片麻岩中锆石Th/U比值较高(Th/U0.49),阴极发光图像显示锆石内部韵律环带明显,具典型岩浆锆石成因的特征。Cameca锆石U-Pb同位素加权平均年龄为282.1Ma±0.9Ma,表明花岗岩岩体形成于早二叠世,暗示澜沧江结合带在早二叠世存在岩浆增生事件。  相似文献   

6.
In‐situ SIMS analyses of O and U‐Pb isotopes were carried out for zircons from a quartz vein hosted by ultrahigh‐pressure metagranite (UHP) in the Dabie orogen. The results are integrated to decipher the property of unusual U‐rich aqueous fluids and their effects on both metamorphic and magmatic zircons during exhumation of the UHP metagranite. In CL images, most zircon grains show distinct core‐rim structures. Relict cores are bright and exhibit oscillatory or patchy zonation, giving Neoproterozoic upper‐intercept ages of 795 ± 26 Ma. Newly grown rims are dark and exhibit no zoning, yielding Triassic concordant ages of 215 ± 5 Ma. The cores give Th contents of 59 to 463 ppm and U contents of 98 to 558 ppm, with Th/U ratios of 0.263 to 1.423. The rims yield reduced Th contents of 11 to 124 ppm but significantly elevated U contents of 1051 to 3531 ppm, with Th/U ratios of 0.010 to 0.035. Comparison with the cores of magmatic origin, the unusual enrichment in U but depletion in Th in the rims of metamorphic origin are interpreted as zircon growth from Cl‐rich oxidized vein‐forming aqueous fluids that were produced by dehydration reactions of the wallrock during continental exhumation. The cores have variably positive δ18O values with concordant or discordant Neoproterozoic U‐Pb ages, suggesting their solid‐state modification of both O and U‐Pb isotopes through interaction with the fluids. The rims yield negative δ18O values, indicating their growth from the negative δ18O fluids. Taken together, the proposed Cl‐rich oxidized negative‐δ18O vein‐forming aqueous fluids have such an ability to not only cause variable metamorphic recrystallization in the relict magmatic zircons but also produce dramatic fractionation of U over Th in the metamorphic zircons during quartz veining, and potentially impact on the overlain metasomatite in the mantle wedge.  相似文献   

7.
秦岭拉鸡庙镁铁质岩体锆石LA-ICP-MS年代学研究   总被引:10,自引:7,他引:3  
刘军锋  孙勇  孙卫东 《岩石学报》2009,25(2):320-330
秦岭拉鸡庙镁铁质岩体位于北秦岭南缘,主要由辉长岩(80%)、苏长辉长岩(15%)和少量闪长岩等侵入杂岩组成。对采自该岩体闪长岩的锆石进行阴极发光图像、微区原位LA-ICP-MS微量元素分析和U-Pb定年。CL图像显示这些锆石可以分为两类,一类锆石呈长柱状,具有明显的岩浆生长环带;另一类则呈浑圆状,阴极发光图像复杂,部分颗粒岩浆生长环带较模糊,个别样品外围存在一窄的亮色环边,推测为后期地质事件影响的结果。对26颗锆石核部和生长边进行28次U-Pb同位素分析,获得两组206Pb/238U年龄,分别为973±60Ma和422±7Ma。分析结果显示,所有样品具有高的Th, U, REE含量,明显富集HREE,其Th/U比值普遍高于0.6,表明这些锆石应属于岩浆成因。其中,422±7Ma应该代表拉鸡庙镁铁质岩体的成岩时代,这可能与古生代扬子陆块或者是具有扬子板块属性的微陆块和华北陆块的碰撞有关,该碰撞导致了秦岭洋的闭合;而973±60Ma应为捕获锆石年龄,代表北秦岭早期与Rodinia超大陆拼合有关的岩浆事件。考虑到没有检测到典型的华北克拉通的年龄,推测元古代北秦岭更接近华南板块。  相似文献   

8.
Albitite often accompanies with various metal and gem mineral deposits and a large number of occurrences have been reported globally, including the South Qinling orogen, China. The Xiaozhen copper deposit is a typical deposit in the North Daba Mountain area of the South Qinling orogen whose distribution is controlled by albitite veins and fractures. As there are few studies on the petrogenesis of albitite in Xiaozhen copper deposit, this paper focuses on the petrogenesis of albitite and its mineralization age. Detailed fieldwork and mineral microscopic observations initially suggest that albitite from the Xiaozhen copper deposit is igneous in origin. Further zircon trace element geochemistry studies indicate that these zircons have high Th/U ratios(0.5), low La content, high(Sm/La)N and Ce/Ce*values, and a strong negative Eu anomaly, which are commonly seen in magmatic zircons. The chondrite–normalized rare earth element(REE) patterns are consistent with magmatic zircons from throughout the world, and they fall within or near the field of magmatic zircons on discriminant diagrams. The calculated average apparent Ti–in–zircon temperature for young zircons is 780°C, consistent with magmatic zircon crystallization temperatures. Therefore, zircon geochemistry indicates that the albitite origin is magmatic. SIMS U–Pb dating on nine magmatic zircons yielded a concordia age of 154.8±2.2 Ma, which represents the formation of albitite and the metallogenic age. More importantly, it is consistent with the ages of Yanshanian magmatism and metallogenesis in the South Qinling orogen, so formation of the Xiaozhen copper deposit may be a closely related geological event.  相似文献   

9.
The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ∼20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of LaN > 1 and PrN > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth’s history.  相似文献   

10.
The Berezitovoe deposit is a large-sized Au-Ag-Zn-Pb deposit in the east of the SelengaStanovoi superterrane, Russia. Au-Ag orebodies are hosted by tourmaline-garnet-quartz-muscovite metasomatic rocks; Zn-Pb orebodies are hosted by granodiorites, porphyritic granites and tourmalinegarnet-quartz-muscovite metasomatic rocks. These orebodies are surrounded by wall rocks dominated by the Tukuringra Complex granodiorites, porphyritic granites, and gneissic granodiorites. The alteration includes silicification and garnet, sericitization chloritization, carbonatization and kaollinization. LA-ICP-MS U-Pb zircon dating indicates that the gold mineralization can be divided into two stages in the Berezitovoe polymetallic gold deposit(at 363.5 ± 1.5 Ma, and133.4± 0.5).Hornblende-plagioclase gneisses of the Mogocha Group in the study area underwent Paleoproterozoic metamorphism(at 1870 ± 7.8 and 2400 ± 13 Ma), gneissic granodiorite of the Tukuringra Complex yields a late Paleozoic magmatic age(at 379.2 ± 1.1 Ma),and subalkaline porphyritic granitoid of the Amudzhikan Complex yield late Mesozoic magmatic ages(133-139 and 150-163 Ma). Granodiorites of the Tukuringra Complex in the study area have high concentrations of SiO_2(average of 60.9 wt%), are aluminum-oversaturated(average A/CNK of 1.49), are enriched in the large ion lithophile elements(e.g.,K, Rb, and Ba), U, Th, and Pb, are depleted in high field strength elements(e.g., Ta, Nb, and Ti), and have slightly negative Eu and no Ce anomalies in chondrite-normalized rare earth element diagrams.Fluid inclusions from quartz veins include three types: aqueous two-phase, CO_2-bearing three-phase,and pure CO_2. Aqueous two-phase inclusions homogenize at 167℃-249℃ and have salinities of 4.32%-9.47% NaCl equivalent, densities of 0.86-0.95 g/cm~3, and formed at depths of 0.52-0.94 km. In comparison, the C0_2-bearing three-phase inclusions have homogenization temperatures of 265℃-346℃,salinities of 7.14%-11.57% NaCl equivalent, and total densities of 0.62-0.67 g/cm~3. The geochemical and zircon U-Pb data and the regional tectonic evolution of the study area, show that the Berezitovoe polymetallic gold deposit formed in an island arc or active continental margin setting, most probably related to late Paleozoic subduction of Okhotsk Ocean crust beneath the Siberian Plate.  相似文献   

11.
Results of local isotopic-geochemical and chemical examination of zircons from metabasites of the Kontokki dike complex in the Kostomuksha structure, western Karelia, Russia, make it possible to interpret the concordant U-Pb zircon age of 2674 ± 13 Ma as the boundary between regional amphibolite-facies metamorphism and accompanying metasomatism. Zircons from the metabasites arte heterogeneous and consist of central parts with relict magmatic cores, metamorphic intermediate zones (which are pale in CL), and younger metasomatically altered zones (dark in BSE images), which development along boundaries between zones and lengthwise arrays of cracks permeable to fluids. The dark altered zones are characterized by high (for zircons) concentrations of LREE, MREE, Th, U, Ca, Sr, Ba, Fe, and Al. The REE distribution in the zircons was proved to be much less susceptible to overprinted metasomatic processes than the U-Pb system of the same zircons. Characteristics of the REE distribution in the zircons makes these zircons comparable with metasomatic zircons. Genetically, the metasomatic processes that affected the geochemistry of the zircons could be related to synmetamorphic granitoid intrusions (Bibikova et al., 2005).  相似文献   

12.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

13.
鲁西是华北克拉通太古宙基底典型分布区之一,存在新太古代早期到晚期长期连续的地质演化的记录。在泰山地区黄前水库北侧,我们对相互关系十分清楚的不同类型和时代TTG岩浆岩进行了详细野外地质观察和锆石SHRIMP U-Pb定年。早期片麻状英云闪长岩为望府山杂岩的一部分,具有深熔特征,岩浆锆石和变质锆石年龄分别为2695±7 Ma和2630±10 Ma。早期片麻状英云闪长岩被奥长花岗岩脉切割,后者的两组锆石年龄分别为2626±8 Ma和2689±12 Ma,分别代表了其形成时代和捕获锆石年龄。之后,它们又被晚期弱片麻状英云闪长岩(线峪岩体)侵入,其岩浆锆石年龄为2547±7 Ma,存在2.6~2.7 Ga捕获锆石。这些不同时代岩浆岩的形成过程是鲁西地区新太古代地质演化的一个缩影。  相似文献   

14.
An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218±5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism, and was strengthened by the early stage of retrograde metamorphic fluid activity.  相似文献   

15.
ABSTRACT

We report new zircon U–Pb ages, Hf isotopic and geochemical results for the Tongling granitic plutons of Southeast China. SHRIMP U–Pb ages for the Miaojia quartz monzodiorite porphyrite,the Tianebaodan and Tongguanshan quartz monzodiorites, the Xinqiaotou granodiorite porphyry, and the Shatanjiao and Nanhongchong granodiorite are 143 ± 2, 141 ± 1 and 142 ± 1, 147 ± 1, and 145 ± 1 and 139 ± 1 Ma, respectively. Combined with previous geochronological data, our results indicate that the porphyritic rocks are older than rocks of the same type lacking porphyritic texture. Geochemically, these high-K calc-alkaline intrusive rocks are characterized by arc-like trace element distribution patterns, with significant enrichment in LILE and LREE but depletion in HFSE. Lu–Hf isotopic compositions of zircons from the high-K calc-alkaline (HKCA) rocks have εHf(t) values of magmatic 139–147 Ma zircons from ?8.1 to ?25.6, with two-stage model ages (tDM2) of 1.71–2.67 Ga, whereas εHf(t) values of inherited 582–844 Ma zircons range from 5.4 to ?9.5, with tDM2 of 1.39–2.22 Ma, younger than tDM2 values of igneous zircon, indicating that newly formed mantle material was added to the continental crust of the Yangtze Block. Moreover, εHf(t) values of inherited zircon cores older than 1000 Ma are from ?7.8 to ?26, similar to magmatic zircons, and the tDM2 values are all greater than 3.0 Ga (3.16–3.75 Ga), reflecting partial melting of ancient sialic material. We conclude that the plutonic melts were derived from both the enriched mantle and the ancient crust. The HKCA Tongling intrusions coincide temporally with the J3–K1 magmatic event that was widespread in Southeast China. This igneous activity may have accompanied sinistral slip along the Tan-Lu fault due to oblique subduction of the Palaeo-Pacific plate.  相似文献   

16.
河北省崇礼县东坪金矿位于水泉沟碱性杂岩体内, 金矿石包括低硫化物石英脉型和钾质蚀变岩型两种类型。本次工作我们对采自东坪金矿70号脉深部的钾质蚀变岩中的锆石进行了成因矿物学和成矿年代学研究, 结果表明, 矿脉中的锆石可以分成岩浆锆石和热液锆石两种成因类型。岩浆锆石具有自形到半自形结构,在背散射电子图像(BSE)上呈暗灰色, 在阴极发光图像(CL)上具有明显的岩浆振荡环带, 锆石U-Pb加权平均年龄为382.8±3.3 Ma。热液锆石多呈不规则状充填在岩浆锆石中, 在BSE图像上呈亮灰白色, 在CL图像上为深黑色(无阴极发光), 锆石的Th、U含量和Th/U比值较岩浆锆石明显增高, 锆石U-Pb加权平均年龄为140.3±1.4 Ma, 说明东坪金矿形成于早白垩世。140 Ma成矿年龄的发现, 为认识河北省东坪金矿的成矿时代提供了新证据, 具有重要的地质意义。  相似文献   

17.
For magmatic rocks, it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample, which gives rise to large dating errors or even unrealistic dating results. As the trace element concentrations of zircon can reflect its equilibrated magma characteristics, they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber. This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages, which can be used to determine a more accurate intrusion crystallization age. The late Mesozoic Huayuangong granitic pluton complex, which is located in the Lower Yangtze region, eastern China, was selected for a case study. The Huayuangong pluton comprises the central intrusion and the marginal intrusion. Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6 ± 2.0 Ma and 125.9 ± 1.6 Ma. These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma, from which the dated zircons crystallized. However, for the central intrusion, the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span. For each sample from the central intrusion, the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend, but rather can be divided into two groups. We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred. By screening zircon analytical spots using these two indicators, the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8 ± 4.3 Ma and 122.9 ± 2.2 Ma, which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.  相似文献   

18.
大井是内蒙古东部地区的一处大型铜银锡多金属矿床,矿体呈脉状产出在二叠系林西组地层中,受NW或NWW向断裂控制。本文对大井矿区及其外围主要侵入岩体和火山岩开展了年代学和地球化学研究。LA-MC-ICP-MS锆石测年结果表明,大井矿区内靠近1号矿脉产出的2件霏细岩脉样品的锆石年龄分别为170.7±1.4Ma(MSWD=1.9)和170.7±1.1Ma(MSWD=1.3);矿区外围马鞍子黑云母二长花岗岩体的锆石年龄为279.7±1.3Ma(MSWD=0.74);唐家营子附近安山玢岩脉的锆石年龄为252.0±1.8Ma(MSWD=1.6);大四段村似斑状黑云母二长花岗岩体的锆石年龄为242.8±1.7Ma(MSWD=1.7);采自大坝南部的流纹质晶屑熔结凝灰岩、流纹质火山角砾熔岩和晶屑凝灰岩的锆石年龄分别为143.5±0.7Ma(MSWD=0.38),144.3±0.7Ma(MSWD=1.2)和145.3±1.0Ma(MSWD=2.5);小城子村南部石英斑岩脉的锆石年龄为146.1±0.9Ma(MSWD=1.7),安山玢岩脉的锆石年龄133.2±0.7Ma(MSWD=0.96)。反映本区至少存在四期岩浆活动,分别是海西晚期、印支早期、燕山早期和燕山中期。岩石地球化学分析结果表明,大井矿区及外围主要侵入岩(黑云母二长花岗岩、似斑状黑云母二长花岗岩、霏细岩、安山玢岩和石英斑岩)均为富SiO2、富碱、准铝的钙碱性岩石,在SiO2-K2O图解上均落入"高钾钙碱系列"区。所有的岩石样品具有轻稀土分异明显、富集大离子亲石元素(LILE)的特征,其中Ba、Nb、Sr、P、Ti相对亏损,而Rb、Th、K、Ce、Nd、Hf、Sm、Y 和Yb相对富集。侵入岩和火山岩的年代学与岩石地球化学特征表明,马鞍子黑云母二长花岗岩和大四段村似斑状黑云母二长花岗岩的侵位可能与古亚洲洋的碰撞闭合有关,形成于挤压的构造环境;燕山早期侵入岩在本区并不发育,其形成环境还有待进一步查明,可能与西伯利亚板块和蒙古-华北板块之间的鄂霍茨克洋消亡及后碰撞造山有关;而燕山晚期大规模的侵入-火山喷发活动可能是由岩石圈减薄,区域大规模伸展所引起。根据本文对矿区内及外围侵入岩与火山岩的年代学研究,结合矿区地质和前人研究成果,认为大井铜银锡矿床的成矿主要与晚侏罗世-早白垩世岩浆活动(146~133Ma)有关,是区域伸展构造背景下岩浆活动的产物。  相似文献   

19.
Uranium-lead ages are reported for zircons from ultramafic bodies and metamorphic host rocks of the Western Series that outcrop at La Cabaña, in the southern section of the coastal accretionary complex of central Chile. Metasedimentary mica schists hosting the ultramafic bodies contain a main detrital zircon population of Devonian age (365–380 Ma) clustering around ~368 Ma, differing significantly from neighbouring areas where Devonian zircons are scarce. Zircons from the metasomatic reaction zones (albitites and chloritites), formed during the emplacement and alteration of the ultramafic bodies, are mainly Ordovician (~478 Ma) and lack Devonian zircons, resembling a typical detrital zircon pattern from other locations in the Western Series. Zircons from the chloritite reaction zone of the Lavanderos serpentinite, the easternmost ultramafic body in La Cabaña, are in textural equilibrium with metamorphic ilmenite. Some of these zircons yield an average age of 283.4 ± 7 Ma (n = 6) which is identical, within error, to a previously reported K-Ar fuchsite cooling age of 282 ± 6 Ma from the reaction zone. Most zircons extracted from chromitite boulders have euhedral oscillatory-zoned growth patterns with a similar range of ages than those reported for the Western Series (324–1090 Ma; n = 12), except for two zircons with cloudy appearance and high U/Th ratios which yielded an average age of 285.5 ± 7 Ma. The presence of Early Permian zircons (~280–290 Ma) in all studied rocks suggests remobilization of Zr, possibly triggered by metasomatic fluids released during the disequilibrium reaction associated with the tectonic emplacement of the ultramafic rocks into the metasedimentary rock. Simultaneously with the formation of metasomatic zircons, Palaeozoic and Mesoproterozoic zircons from the metasedimentary rocks were mechanically incorporated into the ultramafic rocks, thus providing a record of the timing of crustal emplacement of the ultramafic rocks into the accretionary complex.  相似文献   

20.
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit, northern margin of the North China Craton(NCC), which provide insights into the plate tectonic in Paleoproterozoic. Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma, respectively). Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals, and none of the zircon grains has the extremely high Th/U characteristic of carbonatite, which are consistent with crystallization of the zircon from silicate, and the zircon is suggested to be derived from trapped basement complex. Hf isotopes in the zircon from the studied carbonatite are different from grain to grain, suggesting the zircons were not all formed in one single process. Majority of εHf(t) values are compatible with ancient crustal sources with limited juvenile component. The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma. Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC, coeval with the assembly of the supercontinent Columbia, and provide insights into the plate tectonic of the NCC in Paleoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号