首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文基于2002—2016年OFAM(Ocean Forecast Australian Model)模式数据,通过谱分析与相关分析等方法,研究了龙目海域上层环流结构的季节变化特征及主要的影响因素。分析结果表明,龙目海峡(Lombok Strait)平均流量占印尼贯穿流(Indonesian throughflow, ITF)总出口流量的15%,呈现出南半球冬强夏弱的特点,具有半年和一年的周期特征;龙目海域上层环流结构具有明显的季节特征,受到卡里马塔海峡贯穿流(Karimatastraitthroughflow,KSTF)和望加锡海峡贯穿流(Makassarstrait throughflow,MSTF)的周期性影响,一年可以分为四个阶段,存在结构性差异。KSTF(MSTF)为上层龙目海峡带来高温低盐(低温高盐)水团。进一步分析发现局地风场、大气季节内振荡(Madden-Julian Oscillation, MJO)以及海底地形是龙目海域上层环流结构季节变化的主要影响因素。  相似文献   

2.
文章采用三维海洋模式MITgcm, 对印度尼西亚海(简称印尼海)内潮的生成和传播过程进行了研究。研究结果表明: 1)苏拉威西海和西北太平洋地区的内潮呈现明显的全日潮信号; 望加锡海峡、翁拜海峡、东北印度洋、帝汶海等站位的内潮呈现明显的半日潮信号; 2)印尼海区内潮的标准化振幅在苏拉威西海、望加锡海峡、翁拜海峡、马鲁古海、班达海、东北印度洋和西北太平洋地区均在温跃层附近达到最大, 约为20~40m; 在帝汶海地区在水深200m附近达到最大, 约为25~30m; 3)桑岭、斯兰海、翁拜海峡和帝汶海是主要的内潮生成区域, 内潮能通量达40kW·m-1; 4)苏禄海的内潮能量主要来自于局地正压潮的转化, 苏拉威西海和班达海的内潮能量则主要来自外部的传入。  相似文献   

3.
文章采用三维海洋模式MITgcm,对印度尼西亚海(简称印尼海)内潮的生成和传播过程进行了研究。研究结果表明:1)苏拉威西海和西北太平洋地区的内潮呈现明显的全日潮信号;望加锡海峡、翁拜海峡、东北印度洋、帝汶海等站位的内潮呈现明显的半日潮信号;2)印尼海区内潮的标准化振幅在苏拉威西海、望加锡海峡、翁拜海峡、马鲁古海、班达海、东北印度洋和西北太平洋地区均在温跃层附近达到最大,约为20~40m;在帝汶海地区在水深200m附近达到最大,约为25~30m;3)桑岭、斯兰海、翁拜海峡和帝汶海是主要的内潮生成区域,内潮能通量达40k W·m–1;4)苏禄海的内潮能量主要来自于局地正压潮的转化,苏拉威西海和班达海的内潮能量则主要来自外部的传入。  相似文献   

4.
卡里马塔海峡贯穿流将中国南海的低盐水输运到爪哇海,与印度尼西亚贯穿流(印尼贯穿流)携带的西太平洋高盐水在印度尼西亚海(印尼海)交汇,二者通过混合、浮力强迫等过程相互作用.这改变了印度尼西亚海的水体热盐性质,影响局地海气交换和热带太平洋-印度洋之间的热盐交换.依据卡里马塔海峡、龙目海峡和望加锡海峡的实测表层海流数据,采用...  相似文献   

5.
印尼穿越流作为连接西太平洋和印度洋的唯一通道,调节着这两个大洋之间的热量和水汽的交换,继而在热带乃至全球气候变化中扮演着重要的角色。本文对来自于帝汶海内印尼穿越流出口处SO18460钻孔中浮游有孔虫Globigerinoides ruber和Pulleniatina obliquiloculata壳体的Mg/Ca比值和氧同位素进行再分析,重建了末次冰期以来表层和温跃层海水温度、盐度以及温跃层深度的变化,并将其与区域古气候记录对比以探讨其意义。结果表明,末次冰期以来,SO18460孔的表层和温跃层海水盐度均与区域降雨量记录变化一致,显示降雨信号以海水盐度的形式通过水体混合由表层向温跃层的传输。自早全新世以来,SO18460孔的表层海水温度在28℃左右波动,可能是受西太平洋暖池的影响;同时,温跃层海水温度始终低于22℃可能指示厄尔尼诺-南方涛动处于类厄尔尼诺状态;而温跃层海水温度持续下降、温跃层深度持续变浅,一方面可能是对早全新世以来类厄尔尼诺事件频发的响应,另一方面也可能归因于热带辐合带的南向移动导致区域降雨增加、以及东亚冬季风驱使南海表层流的加强等因素对印尼穿越流表层流的抑制。冰期-间冰期尺度上,SO18460孔温跃层海水温度与北半球夏季太阳辐射量变化步幅一致,可能是北太平洋热带水借助棉兰老岛流在苏拉威西海混入印尼穿越流所致。  相似文献   

6.
为了解印度洋大眼金枪鱼(Thunnus obesus)和黄鳍金枪鱼(Thunnus albacares)主要作业渔场温跃层上界温度、深度和垂直温差时空变化特征,采用2007~2010年Argo温度剖面浮标资料,计算了印度洋大眼金枪鱼、黄鳍金枪鱼主要作业渔场次表层温度和温跃层特征参数.研究认为,温跃层上界深度、温度和10~200 m温差存在明显的季节性变化.5~9月在15°~25°S纬向区域存在一块季节性较深的温跃层上界深度区域;在20°S以南海域,12月至次年4月份温跃层上界深度非常浅;在15°S至赤道纬向区域,尤其是在西部,常年存在一块温跃层较浅的区域.总体而言,温跃层上界深度较深的地方温度相对较低,在2~5月期间,在阿拉伯海东南和孟加拉湾西南形成一块大面积的暖水区;7~9月期间,在15°~25°S,纬向区域因温跃层上界深度较深,从表层至温跃层上界深度温度变化相对较大,温跃层上界温度显著较低.在20°S以南,温跃层上界温度常年都很低.10°S经线方向将水下10 ~200 m垂直温度分成南北两部分,10°S以南部及以北部海区的垂直温差分别大于和小于10℃.分析结果初步揭示了金枪鱼主要作业渔场温跃层上界温度、深度和垂直温差分布特征,为金枪鱼实际生产作业提供理论参考.  相似文献   

7.
基于2003年5月至10月ENVISAT ASAR宽幅模式(Wide Swath Mode, WSM)数据和2003年11月至2004年5月ENVISAT ASAR单视复数模式(Image Mode SLC, IMS)数据,利用多普勒质心偏移法获取了海面运动引起的多普勒质心异常,通过去除风和Bragg波引起的多普勒频移,最终获得龙目海峡海表径向流速。利用AVISO(Archiving, Validation and Interpretation of Satellite Oceanographic Data)流场数据对结果进行了精度验证,并分析了龙目海峡海表流速变化。结果表明:本文反演得到的海表面流速与AVISO流场匹配度较好,其中由WSM数据反演得到的流速与AVISO流场均方根误差为0.28 m/s,IMS数据反演得到的流速与AVISO流速均方根误差为0.37 m/s。在研究区范围内,2003年5月至9月海流流速较大(-2.56~2.51 m/s),10月流速减小(-0.79~0.72 m/s),11月至12月流速逐月增大(-1.64~1.25 m/s),2004年3月流速达到最低值(-0.58 m/s),2004年4月至5月流速逐月增大(-1.46~1.72 m/s);在南半球夏季(12月)和秋季(5月)龙目海峡出现北向逆流,其余皆为南向流。该流场反演方法可有效提取海面流速信息,从而为海面流场变化研究提供有效支撑。  相似文献   

8.
基于WOD13(World Ocean Database 2013)的温盐观测资料,分析了对马海峡断面和日本海内一断面上温盐分布的季节变化特征,并利用水团组成混合比的方法探讨了对马海峡断面处的水团组成对日本海内断面上温盐分布的影响的季节和年际变化。研究表明:对马海峡断面上水团组成呈现显著的季节变化。冬季,整个水层被高盐水占据;夏季,对马海峡表层出现高温低盐水,底层为高盐水,次表层为表层低盐水和底层高盐水的混合水体;春秋为过渡季节。日本海断面上,秋季温盐分布最为复杂,表层为高温低盐水,次表层为高盐水,其下为低温高密水。两个断面季节变化对比可以看出,夏季对马海峡断面处的水团组成会影响秋季日本海断面上的温盐分布。夏季对马海峡表层和次表层水是秋季日本海断面表层50m以浅出现低盐水的主要原因;对马海峡深层高盐水主要影响秋季日本海断面50~150m水层,混合比可达0.82;其下为日本海固有水。夏季对马海峡处水团组成的年际变化也会影响秋季日本海断面上温盐分布的年际变化。长江流量较大的年份,夏季对马海峡表层和次表层低盐水的核心盐度值偏低,秋季其在日本海断面上的混合比就高于其他年份;对马海峡底层高盐水在日本海断面上混合比的年际变化则决定于其影响水层上的流场结构和温盐分布。  相似文献   

9.
黑潮在流经吕宋海峡时呈现各种时间尺度的流态变化。本文基于高分辨率的区域海洋环流模式(ROMS)输出数据,分析了黑潮主流轴在吕宋海峡附近的变化特征和可能原因。研究结果表明,黑潮流轴在该区域具有明显的年际、季节和季节内变化,其中季节内变化最为强烈;在年际和季节时间尺度上,黑潮流轴在表层主要受局地风驱动的艾克曼漂流的影响,而在次表层则主要由黑潮本身的惯性决定;在季节内时间尺度上,黑潮流轴的变化主要受制于涡旋与黑潮的相互作用。  相似文献   

10.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

11.
Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly available data sets and output from a numerical model. Emphasis is put on the upper layers of the Indonesian Throughflow that impacts the heat and freshwater fluxes of the South Equatorial Current in the Indian Ocean. During the April–June monsoon transition the salinity maximum signature of the North Pacific thermocline water is strongly attenuated. This freshening of the thermocline layer is more intense in Ombai and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon currents and subject to strong diapycnal mixing. The freshwater exits to the Indian Ocean first through Lombok Strait and later through Ombai and Timor, with an advective phase lag of between one and five months. Because of these phase lags, the fresher surface and thermocline water is found in the southeast Indian Ocean from the beginning of the monsoon transition period in April through until the end of the southeast monsoon in September, a much longer time period than previously estimated.  相似文献   

12.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

13.
The straits connect two large water bodies show highly strong and stratified currents related to meteorological, morphological and hydrodynamic conditions. In some cases, spatial and temporal changes of the stratified currents and their thickness, direction and magnitude are so complex. This complexity directly affects the circulation pattern in the region, water exchange between both ends of the straits and migration of fish species. In order to understand general characteristics of this kind of straits and identifying the complexity of the hydrodynamics of the region and evaluate the secondary currents and recirculation need long term, intensive, field work and measurement studies. As an example of this kind of hydrodynamically complex straits, Bosphorus strait is selected for a field study. The Bosphorus strait has a strongly stratified two-layer system and a unique case of the maximal exchange regime typical of strait flows, which is largely determined by conditions at the Black Sea. Although the Bosphorus strait has distinct two-layer stratification with an associated two-layer system exchange, no continuous current measurements have been made so far, previous measurements all having been random sampling.In this paper, a detailed measurement program has been applied to Bosphorus strait. In the measurement program, a short-term current profile measurement at selected locations at southern part of the strait has been conveyed. Additionally a long-term measurement of current profile has been performed at a selected critical location (in front of the Dolmabahçe Palace) where a recirculation flow exists in the strait. The scope of this paper is to present the techniques and the results of analysis of measurement data. In the measurements the current profile (magnitude and direction) has been determined at every 1 m depth intervals from the surface to the sea bottom at 3 min duration at every hour. Measurements provide that lower-layer flows in northward direction from the Sea of Marmara towards the Black Sea, whereas the upper-layer flow comes from the Black Sea and flows towards the Sea of Marmara in the opposite direction of lower layer. The Bosphorus strait exhibits distinctive features associated with variations in its width and depth. The meandering features of Bosphorus also cause recirculation flows. These results of measurements are presented, discussed and compared with previous studies.  相似文献   

14.
This paper studies sea level anomaly (SLA) behaviour in Malacca and Singapore straits which serve part of a major maritime trade route between Indian and Pacific Ocean using both observed data and numerical model. Spatio-temporal behaviour of SLA in the region is analyzed based on 15 years of in-situ and remote sensing data. Results show that SLA signatures can be distinctly different in the two straits, with vastly opposite behaviours during certain months. By further analyzing spatial dependency of observed SLA in the region, SLA in Malacca and Singapore straits are found to be under the influence of Indian Ocean and South China Sea, respectively. Based on this insight, a numerical model is built with the appropriate non-tidal forcing derived from meteorological model and satellite dataset to properly represent SLA in Malacca and Singapore straits with Root Mean Square Error of less than 10 cm. With this well calibrated model, the effect of different types of forcing on volume flux through the straits is investigated. Combined tidal and non-tidal forcing in the model gives 4 to 7 × 1011 m3 of annual net westward volume flux through the straits which is four to seven times higher than that of tidal forcing alone. Furthermore with this combined forcing, a distinct seasonal trend with westward net flow during northeast monsoon (November to March) and eastward net flow during southwest monsoon (May to September) can be observed through the straits in the model which is not observed with tidal forcing. The findings of this paper highlight the importance of these non-tidal forcing in the model to obtain accurate SLA and flow representation in the straits that is vital to environmental fate and transport modelling during operational forecast.  相似文献   

15.
The strong tidal current (tidal jet) in straits generates tidal vortices with a scale of several kilometers. The role of the vortices in material transport was investigated in the Neko Seto Sea, located in the western part of the Seto Inland Sea of Japan. A clockwise vortex with a diameter of about 0.8 km was observed in Nigata Bay (lying between two straits, the Neko Seto Strait and the Meneko Seto Strait). It was concluded that the clockwise vortex was the tidal vortex which was generated by the tidal jet in the Meneko Seto Strait. The vortex moved into the bay with the tide, but tended to stay on the sand bank in the bay. It was confirmed by current measurement with an ADCP and turbidity measurement that the secondary convergent flow was generated in the bottom layer of the vortex. This secondary flow seemed to contribute to the formation of the sand bank. It was suggested that tidal vortices may play an important role in the sediment transport and formation of topography in and around straits.  相似文献   

16.
Sand banks around straits are used as a commercial fishing ground. In order to clarify the mechanism of sand bank formation, the Lagrangian method was used to measure currents and turbidity around the banks in the Neko Seto Sea in the Seto Inland Sea of Japan. A neutrally buoyant float released in the Neko Seto Strait at the maximum tidal flow stage was engulfed in a pair of tidal vortices and moved around one of the sand banks. The vertical distribution of turbidity, which was measured by the vessel moving with the neutral float, showed an extremely high turbidity in the bottom layer of this bank area. According to the analysis of these observational data, the process of sand bank formation around straits is as follows. The tidal vortex transports water mass with suspended materials (including sand) which are whirled up at the bottom by the tidal jet. In the decaying stage of the vortex, the materials in the bottom layer are gathered in the central part of the vortex by the secondary convergent flow in the vortex. Among these materials, a large-size sand particle with a high critical erosion velocity accumulates at the bottom and forms banks. The distribution of bottom sediment and the thickness of alluvium support this result.  相似文献   

17.
Owing to their complex character, modeling flow patterns of narrow straits has always been a challenge, even with the numerical techniques of today. This study was aimed at predicting vertical current profiles of a given point in a narrow strait, the Strait of Istanbul. On account of the speed and simplicity it offers, and of its remarkable success in solving complex problems, the feed forward back propagation (FFBP) artificial neural network (ANN) technique was chosen for this study. The model was built on 7039 hours of concurrent measurements of current profiles, meteorological conditions, and surface elevations. The model predicted 12 outputs of East and North velocity components at different depths in a given location. Various alternative models with different inputs and neuron numbers were evaluated attaining the best model by trial and error. Predictions from proposed ANN model were in accordance with the observations with average root mean square error of 0.16 m/s. The same input parameters were then used to build models that predicted current velocities 1–12 h into the future. Results of these predictions show good overall agreement with observations and that FFBP ANN can be used as a reliable tool for forecasting current profiles in straits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号