首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports the results of a study of the composition of mica (biotite) crystallizing in the system of phonolite melt-Cl- and F-bearing aqueous fluid at T ~ 850°C, P = 200 MPa, and \(f_{O_2 } \) = Ni-NiO, as well as data on F and Cl partitioning between coexisting phases. It was established that Cl content in mica is significantly lower than in phonolite melt and, especially, in fluid. Fluorine shows a different behavior in this system: its content in mica is always higher than in phonolite melt but lower than in fluid. The mica-melt partition coefficients of Cl and F also behave differently. The Cl partition coefficient gradually increases from 0.17 to 0.33 with increasing Cl content in the system, whereas the partition coefficient of F sharply decreases from 3.0 to 1.0 with increasing total F content. The apparent partition coefficients of F between biotite and groundmass (melt) in various magmatic rocks are usually significantly higher than the experimental values. It was supposed that the higher Bt/glassDF values in natural samples could be related to the influence of later oxidation reactions, reequilibration of biotite at continuously decreasing \(f_{H_2 O} \)/f HF ratio, and an increase in this coefficients with decreasing total F content in the system.  相似文献   

2.
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth’s mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280?°C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F–Cl–Br–I–H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl ol/melt = 1.6?±?0.9 × 10?4) to 0.33 (6) wt% H2O (DCl ol/melt = 2.2?±?1.1 × 10?4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65–78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F–Cl–Br–I–H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280?°C and 0.3 GPa with (R 2?=?0.99): \(D_{F}^{\text{ol/melt}}\ =\ 3.6\pm 0.4\ \times \ {{10}^{-3}}\ \times \ {{X}_{{{\text{H}}_{\text{2}}}\text{O}}}\left( \text{wt }\!\!\%\!\!\text{ } \right)\ +\ 6\ \pm \ 0.4\times \,{{10}^{-4}}\). The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287–295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65–78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth’s mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.  相似文献   

3.
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 °C, 100 MPa and oxygen fugacity(f O2) buffered at approaching Ni–Ni O(NNO). Partition coefficients of Cu(DCu= cfluid/cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O·K2O), abbreviated as Al/Alk], Na/K mole ratios, and Si O2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ± 0.22 with the increase of Al/Alk mole ratios(ranging from 0.64 to 1.20)and Na/K mole ratios(ranging from 0.58 to 2.56). The experimental results also showed that DCuwas positively correlated with the HCl concentration of the starting fluid.The DCuwas independent of the Si O2 mole content in the range of Si O2 content considered. No DCuvalue was less than 1 in our experiments at 850 °C and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than themelt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl-fluid.  相似文献   

4.
The distribution of sulfur between haplogranitic melt and aqueous fluid has been measured as a function of oxygen fugacity (Co-CoO-buffer to hematite-magnetite buffer), pressure (0.5-3 kbar), and temperature (750-850 °C). Sulfur always strongly partitions into the fluid. At a given oxygen fugacity, pressure and temperature, the distribution of sulfur between melt and fluid can be described by one constant partition coefficient over a wide range of sulfur concentrations. Oxygen fugacity is the most important parameter controlling sulfur partitioning. While the fluid/melt partition coefficient of sulfur is 468 ± 32 under Co-CoO buffer conditions at 2 kbar and 850 °C, it decreases to 47 ± 4 at an oxygen fugacity 0.5-1 log unit above Ni-NiO at the same pressure and temperature. A further increase in oxygen fugacity to the hematite-magnetite buffer has virtually no effect on the partition coefficient (Dfluid/melt = 49 ± 2). The dependence of Dfluid/melt on temperature and pressure was systematically explored at an oxygen fugacity 0.5-1 log units above Ni-NiO. At 850 °C, the effect of pressure on the partition coefficient is small (Dfluid/melt = 58 ± 3 at 0.5 kbar; 94 ± 9 at 1 kbar; 47 ± 4 at 2 kbar and 68 ± 5 at 3 kbar) and temperature also has only a minor effect on partitioning.The data show the “sulfur excess” observed in many explosive volcanic eruptions can easily be explained by the presence of a small fraction of hydrous fluid in the magma chamber before the eruption. The sulfur excess can be calculated as the product of the fluid/melt partition coefficient of sulfur and the mass ratio of fluid over melt in the erupted material. For a plausible fluid/melt partition coefficient of 47 under oxidizing conditions, a 10-fold sulfur excess corresponds to a 17.6 wt.% of fluid in the erupted material. Large sulfur excesses (10-fold or higher) are only to be expected if only a small fraction of the magma residing in the magma chamber is erupted.The behavior of sulfur, which seems to be largely independent of pressure and temperature under oxidizing conditions is very different from chlorine, where the fluid/melt partition coefficient strongly increases with pressure. Variations in the SO2/HCl ratio of volcanic gases, if they reflect primary processes in the magma chamber, therefore provide an indicator of pressure variations in a magma. In particular, major increases in the S/Cl ratio of an aqueous fluid coexisting with a felsic magma suggest a pressure reduction in the magma chamber and/or magma rising to the surface.  相似文献   

5.
The effect of silicate liquid structure upon mineral-liquid partitioning has been investigated by determining element partitioning data for coexisting immiscible granitic and ferrobasaltic magmas. The resulting elemental distribution patterns may be interpreted in terms of the relative states of polymerization of the coexisting magmas. Highly charged cations (REE, Ti, Fe, Mn, etc.) are enriched in the ferrobasaltic melt. The ferrobasaltic melt is relatively depolymerized due to its low SiO ratio. This allows highly charged cations to obtain stable coordination polyhedra of oxygen within the ferrobasaltic melt. The granitic melt is a highly polymerized network structure in which Al can occupy tetrahedral sites in copolymerization with Si. The substitution of Al+3 for Si+4 produces a local charge imbalance in the granitic melt which is satisfied by a coupled substitution of alkalis, thus explaining the enrichment of low charge density cations, the alkalis, in the granitic melt. P2O5 increases the width of the solvus and, therefore, the values of the distribution coefficients of the trace elements. This effect is attributed to complexing of metal cations with PO4?3 groups in the ferrobasaltic melt.The values of ferrobasalt-granite liquid distribution coefficients are reflected in distribution coefficients for a mineral and melts of different compositions. The mineral-liquid distribution coefficient for a highly charged cation is greater for a mineral coexisting with a highly polymerized melt (granite) than it is for that same mineral and a depolymerized melt (ferrobasalt). The opposite is true for low charge density cations. Mineralliquid and liquid-liquid distribution coefficients determined for the REE's indicate that fractionated REE patterns are due to mineral selectivity and not the state of polymerization of the melt.  相似文献   

6.
Experimental studies have been performed to constrain sulfur behavior during apatite crystallization and to determine sulfur partition coefficient between apatite and melt (KdSapatite/melt) at oxidizing conditions. Crystallization experiments have been conducted with a hydrous rhyolitic melt and different bulk sulfur contents (0.15 to 2 wt.% S) at 900 and 1,000°C, 200 MPa and Δlog =NNO+3.6. The sulfur content in the glass increases with increasing amount of added S. Anhydrite crystallizes for S added = 0.75 wt.% (0.10 and 0.13 wt.% SO3 in glass at 900 and 1,000°C, respectively). The amount of anhydrite increases and the amount of apatite decreases with increasing amount of added sulfur. The sulfur exchange reaction in apatite is influenced by the bulk composition of the melt (e.g., P content). However, changing melt composition has only little effect on KdSapatite/melt for the investigated rhyolitic composition. The KdSapatite/melt does not depend directly on temperature, decreases from 14.2 to 2.7 with increasing S content in glass from SO3=0.03 to 0.19 wt.%, respectively, and can be predicted from the following equation: ln Kd = −0.0025×S in melt (in ppm)+2.9178. The combination of experimental data obtained for rhyolitic and andesitic melts reveals that the sulfur partition coefficient tends toward a value of 2 for high-sulfur content in the glass (>0.2 wt.% SO3). Using S in apatite as proxy for determining S content in melt is promising but additional experimental data are needed to clarify the individual effects of T, , and P and Ca content in the melt on S partitioning.  相似文献   

7.
Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C.In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are generally equivalent to the concentrations of F determined in the melt inclusions. In contrast, the Cl concentrations of the magmas estimated from apatite-melt equilibria (e.g., ca. 0.3-0.9 wt%) greatly exceed those determined in the melt inclusions from all of these volcanic systems except for the Bishop Tuff where the agreement is good. This discrepancy in estimated Cl concentrations of melt could result from several processes, including the hypothesis that the composition of apatite represents a comparatively Cl-enriched stage of magma evolution that precedes melt inclusion entrapment prior to the sequestration of Cl by coexisting magmatic aqueous and/or saline fluid(s).  相似文献   

8.
9.
利用“RQV-快速内冷淬火”(外加热冷封式)高温高压实验装置,在100MPa、800℃条件下,以东秦岭地区出露的高钾钙碱性岩浆岩(合峪花岗岩)为实验初始物,实验研究了Mo和W在花岗岩-H2O、花岗岩-NaCl(KCl)-H2O及花岗岩-NaF-H2O体系流体/熔体相间的分配行为。实验结果表明,Mo比W更倾向于分配进入流体相(DMo^流体/溶体〉〉DW^流体/溶体),相对于纯水体系而言,流体介质中Cl和F的存在均有利于Mo和W向流体相迁移富集,随体系内Cl含量的不断增高,Mo和W的分配系数呈线性增大趋势,而在天然花岗岩可能含有的F含量范围之内,F含量的增高将阻碍Mo、W向流体相迁移,流体介质中Na/K(摩尔比)的变化对Mo和W的分配系数没有明显影响,表明体系碱质(Na或K)类型不是Mo和W在流体/熔体相间分配的主要影响因素。  相似文献   

10.
Fluid-saturated experiments were conducted to investigate the partitioning of boron among haplogranitic melt, aqueous vapor and brine at 800 °C and 100 MPa. Experiments were carried out in cold-seal pressure vessels for 1 to 21 days, and utilized powdered synthetic subaluminous haplogranite glass doped with 1000 ppm B (crystalline H3BO3) and variable amounts of NaCl and H2O at a fluid/haplogranite mass RATIO=1:1. Run-product glasses were analyzed for boron concentration by secondary ion mass spectrometry (SIMS) and for major elements and chlorine by electron microprobe. The composition of the coexisting fluid was calculated by mass balance. Boron partition coefficients between aqueous vapor and hydrous granitic melt range from 3.1 to 6.3, and demonstrate a clear preference of boron for the vapor over the hydrous melt. Partition coefficients between brine and hydrous granitic melt vary from 0.45 to 1.1, suggesting that boron has no preference for the brine or the melt. The bulk fluid–melt partition coefficients for low-salinity and high-salinity experiments are DB(vapor/melt)=4.6±1.3 and DB(brine/melt)=0.91±0.49, respectively. The corresponding vapor–brine partition coefficient is 5.0±3.1, demonstrating that boron partitions preferentially into the vapor over the brine at the conditions of this study. The preferential incorporation of boron in the aqueous vapor is controlled by borate speciation and solution mechanism. The dominant borate species in aqueous fluids, H3BO3o, is highly soluble in aqueous vapor (XB2O3=0.187); however, B2O3 is immiscible in NaCl liquid. Consequently, concentrations of boron in aqueous vapor are significantly higher than in the coexisting brine. Furthermore, Na–B complexing in the melt at high chlorine fluid contents stabilizes boron in the melt thereby contributing to the non-preferential partitioning of boron between brine and melt. The commonly observed association of tourmalinization (boron metasomatism), brecciation and ore deposition in nature is consistent with the preferential partitioning of boron into aqueous vapor of magmatic-hydrothermal systems predicted by this study.  相似文献   

11.
The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of DClapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ∼3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing DClapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes “saturated” in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which DClapatite/melt and DClfluid/melt begin to increase also depends on composition. The experiments reveal that DFapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so DFapatite/melt is constant for a wide range of composition.The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.  相似文献   

12.
彭省临 《地质科学》1988,(4):353-360
本文用铅、锌在花岗质硅酸盐熔体与流体间的分配实验确立了铅、锌的流-熔分配系数(DV/L)与氯化钠摩尔浓度[mNaCl](0-6mol/L)间的3个线性关系式以及DV/L与F/Cl、K/Na摩尔比值间的变化关系。  相似文献   

13.
Experiments in the systems diopside-albite (Di-Ab) and diopside-albite-dolomite (Di-Ab-Dmt), doped with a wide range of trace elements, have been used to characterise the difference between clinopyroxene-silicate melt and clinopyroxene-carbonate melt partitioning. Experiments in Di-Ab-Dmt yielded clinopyroxene and olivine in equilibrium with CO2-saturated dolomitic carbonate melt at 3 GPa, 1375 °C. The experiments in Di-Ab were designed to bracket those conditions (3 GPa, 1640 °C and 0.8 GPa, 1375 °C), and so minimise the contribution of differential temperature and pressure to partitioning. Partition coefficients, determined by SIMS analysis of run products, differ markedly for some elements between Di-Ab and Di-Ab-Dmt systems. Notably, in the carbonate system clinopyroxene-melt partition coefficients for Si, Al, Ga, heavy REE, Ti and Zr are higher by factors of 5 to 200 than in the silicate system. Conversely, partition coefficients for Nb, light REE, alkali metals and alkaline earths show much less fractionation (<3). The observed differences compare quantitatively with experimental data on partitioning between immiscible carbonate and silicate melts, indicating that changes in melt chemistry provide the dominant control on variation in partition coefficients in this case. The importance of melt chemistry in controlling several aspects of element partitioning is discussed in light of the energetics of the partitioning process. The compositions of clinopyroxene and carbonate melt in our experiments closely match those of near-solidus melts and crystals in CMAS-CO2 at 3 GPa, suggesting that our partition coefficients have direct relevance to melting of carbonated mantle lherzolite. Melts so produced will be characterised by elevated incompatible trace element concentrations, due to the low degrees of melting involved, but marked depletions of Ti and Zr, and fractionated REE patterns. These are common features of natural carbonatites. The different behaviour of trace elements in carbonate and silicate systems will lead to contrasted styles of trace element metasomatism in the mantle. Received: 15 July 1999 / Accepted: 18 February 2000  相似文献   

14.
Tang  Yong  Zhang  Hui 《中国地球化学学报》2015,34(2):194-200
Acta Geochimica - The partition coefficients of W, Nb, and Ta between the P-rich peraluminous granitic melt and the coexisting aqueous fluid were determined at 800–850&nbsp;°C and...  相似文献   

15.
An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800 °C and 1.5 kb with natural granite as the starting material. The effects of the solutions on the partition coefficients of tungsten show a sequence of P > CO 3 2− > B > H2O. The effects are limited (generallyK D < 0.3) and the tungsten shows a preferential trend toward the melt over the aqueous fluid. The value ofK D increases with increasing concentration of phosphorus; theK D increases first and then reduces with the concentration of CO 3 2− when temperature decreases, theK D between the solution of CO 3 2− and the silicate melt increases, and that between the solution of B4O 7 2− and the silicate melt decreases. The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts. TheK D value for phosphorus is 0.38 and that for sodium is 0.56. Evidence shows that the elements tend to become richer and richer in the melts.  相似文献   

16.
Partitioning of manganese between forsterite and silicate liquid   总被引:1,自引:0,他引:1  
Partition coefficients for Mn between forsterite and liquid in the system MgO-CaO-Na2O-Al2O3-SiO2 (+ about 0.2% Mn) were measured by electron microprobe for a variety of melt compositions over the temperature range 1250–1450°C at one atm pressure. The forsterite-liquid partition coefficient of Mn (mole ratio, MnO in Fo/MnO in liquid, designated Dmnfo?Liq) depends on liquid composition as well as temperature: at 1350°C, DMnFo?Liqranges from 0.60 (basic melt, SiO2 = 47wt%) to 1.24 (acidic melt, SiO2 = 65wt%). At lower temperatures, the partition coefficient is more strongly dependent on melt composition.The effects of melt composition and temperature on DMnfo?Liq can be separately evaluated by use of the Si:O atomic ratio of the melts. A plot of DmnFo?Liq measured at various temperatures vs melt Si:O for numerous liquid compositions reveals discrete, constant-temperature curves that are not well defined by plotting DMnFo?Liq against other melt composition parameters such as melt basicity or MgO content. For constant Si:O in the melt, In DMnFo?Liq vs reciprocal absolute temperature is linear; however, the slope of the plot becomes more positive for higher values of Si:O, indicating a higher energy state for Mn2+ ions in acidic melts than in basic melts.Comparison of Mn partitioning data for the iron-free system used in this study with data of other workers on iron-bearing compositions suggests that the effect of iron on Mn partitioning between olivine and melt is small over the range of basalt liquidus temperatures.  相似文献   

17.
F既是重要的岩浆挥发分,又是重要的助熔剂和矿化剂,同时也是克拉克值较大的元素之一,并且在(铝)硅酸盐熔体中高度可溶。本文从F的常见工业矿物和主要赋存形式、分配行为的多样性、对其它元素分配行为的影响、矿化作用(即亲氟元素在热液体系中的氟化物络合形式、存在环境和沉淀机制等)、萤石和冰晶石的溶解及沉淀机制以及富F岩浆一热液体系的成矿专属性及特征6个方面探讨了F的地球化学成矿作用。结论认为:F必须有能力大量进入与花岗质或伟晶岩质熔体共存的含水流体相中才具有进一步的成矿学意义,云英岩化、钠长石化、含黄玉—萤石石英脉、具有较高F/CaO比值的残余熔体以及F在高度演化花岗质岩浆中的过饱和等因素均可能导致含矿富F热液的出溶;但总体上,富F岩浆—热液体系具有成矿专属性的原因之一仍在于:F首先通过对熔体物理化学性质的影响间接支配着高场强亲氟元素如W、Sn、Nb、Ta、REE、U等的热液成矿效应。  相似文献   

18.
The data obtained on melt and fluid inclusions in minerals of granites, metasomatic rocks, and veins with tin ore mineralization at the Industrial’noe deposit in the southern part of the Omsukchan trough, northeastern Russia, indicate that the melt from which the quartz of the granites crystallized contained globules of salt melts. Silicate melt inclusions were used to determine the principal parameters of the magmatic melts that formed the granites, which had temperatures at 760–1020°C, were under pressures of 0.3–3.6 kbar, and had densities of 2.11–2.60 g/cm3 and water concentrations of 1.7–7.0 wt %. The results obtained on the fluid inclusions testify that the parameters of the mineral-forming fluids broadly varied and corresponded to temperatures at 920–275°C, pressures 0.1–3.1 kbar, densities of 0.70–1.90 g/cm3, and salinities of 4.0–75.0 wt % equiv. NaCl. Electron microprobe analyses of the glasses of twelve homogenized inclusions show concentrations of major components typical of an acid magmatic melt (wt %, average): 73.2% SiO2, 15.3% Al2O3, 1.3% FeO, 0.6% CaO, 3.1% Na2O, and 4.5% K2O at elevated concentrations of Cl (up to 0.51 wt %, average 0.31 wt %). The concentrations and distribution of some elements (Cl, K, Ca, Mn, Fe, Cu, Zn, Pb, As, Br, Rb, Sr, and Sn) in polyphase salt globules in quartz from both the granites and a mineralized miarolitic cavity in granite were assayed by micro-PIXE (proton-induced X-ray emission). Analyses of eight salt globules in quartz from the granites point to high concentrations (average, wt %) of Cl (27.5), Fe (9.7), Cu (7.2), Mn (1.1), Zn (0.66), Pb (0.37) and (average, ppm) As (2020), Rb (1850), Sr (1090), and Br (990). The salt globules in the miarolitic quartz are rich in (average of 29 globules, wt %) Cl (25.0), Fe (5.4), Mn (1.0), Zn (0.50), Pb (0.24) and (ppm) Rb (810), Sn (540), and Br (470). The synthesis of all data obtained on melt and fluid inclusions in minerals from the Industrial’noe deposit suggest that the genesis of the tin ore mineralization was related to the crystallization of acid magmatic melts. Original Russian Text@ V.B. Naumov, V.S. Kamenetsky, 2006, published in Geokhimiya, 2006, No. 12, pp. 1279–1289.  相似文献   

19.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

20.
We report an experimental study of the partitioning of Sm in a natural plagioclase/melt system as a function of concentration of Sm at constant pressure, temperature and bulk composition. Both radioactive 151Sm and non-radioactive Sm2O3 were used. In experiments in which the sample was initially held at a temperature above the liquidus for only one hour, we find that the plagioclase/ melt partition coefficient for Sm increases with decreasing concentration of Sm. There is also evidence for isotopic heterogeneity in the initially molten charge. In experiments in which the sample was initially held at the same temperature above the liquidus for 24 hours, the partition coefficient was constant as a function of concentration and no evidence for isotopic heterogeneity was observed. These experiments indicate that partition coefficients obtained from experiments involving tracer isotopes are very sensitive to experimental procedure. Our experiments also indicate that the partition coefficient for Sm between plagioclase and melt is constant over the range 3 to 50,000 ppm Sm in the melt. That range encompasses most concentrations in natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号