共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A benchmark analysis is developed for assessing the reliability of the representation of multiaquifer wells in numerical solute transport simulators. The analysis considers the installation of a well that penetrates two aquifers that are otherwise isolated. The interconnection of the two aquifers by the multiaquifer well leads to the capture of a plume in an upper aquifer and the development of a plume in a lower aquifer. The benchmark analysis couples an exact Laplace transform solution for radially convergent transport with a generalization of an exact Laplace transform solution for radially divergent transport. The benchmark analysis is used to test the multiaquifer well simulation capability incorporated recently in MT3DMS. The results of the analysis provide insights into important issues of model accuracy and efficiency. The results of the analysis also highlight the potential implications of installing wells with relatively long screens at sites with contaminated groundwater. 相似文献
3.
4.
A Horizontal Plane Source Model for Ground-Water Transport 总被引:2,自引:0,他引:2
Donald P. Galya 《Ground water》1987,25(6):733-739
5.
6.
7.
8.
Daniel J. Goode 《Ground water》1992,30(2):257-261
Abstract. During unsteady or transient ground-water flow, the fluid mass per unit volume of aquifer changes as the potentiometric head changes, and solute transport is affected by this change in fluid storage. Three widely applied numerical models of two-dimensional transport partially account for the effects of transient flow by removing terms corresponding to the fluid continuity equation from the transport equation, resulting in a simpler governing equation. However, fluid-storage terms remaining in the transport equation that change during transient flow are, in certain cases, held constant in time in these models. For the case of increasing heads, this approximation, which is unacknowledged in these models'documentation, leads to transport velocities that are too high, and increased concentration at fluid and solute sources. If heads are dropping in time, computed transport velocities are too low. Using parameters that somewhat exaggerate the effects of this approximation, an example numerical simulation indicates solute travel time error of about 14 percent but only minor errors due to incorrect dilution volume. For horizontal flow and transport models that assume fluid density is constant, the product of porosity and aquifer thickness changes in time: initial porosity times initial thickness plus the change in head times the storage coefficient. This formula reduces to the saturated thickness in unconfined aquifers if porosity is assumed to be constant and equal to specific yield. The computational cost of this more accurate representation is insignificant and is easily incorporated in numerical models of solute transport. 相似文献
9.
This work presents the first attempt to develop unconditionally stable, implicit finite difference solutions of one-sided spatial fractional advection-dispersion equation (s-FADE) by imposing the nonzero Dirichlet boundary condition (ND BC) or the nonzero fractional Robin boundary condition (NFR BC) at inlet boundary and the zero fractional Neumann boundary condition (ZFN BC) at outlet boundary. The results of the numerical studies performed using artificial solute transport parameters demonstrated that the numerical solution with the NFR BC as the inlet boundary produced much more realistic concentration values. The numerical solution with the NFR BC at the inlet boundary was capable of correctly describing the Fickian and non-Fickian behaviors of the solute transport at different α values, and it had the relatively same accuracy at different numbers of the spatial nodes. Also, the practical application of the numerical solution with the NFR BC as the inlet boundary was investigated by conducting tracer experiments in homogeneous and heterogeneous soil columns. According to the obtained results, this numerical solution described well solute transport in the homogenous and heterogeneous soils. The α values of the homogeneous and heterogeneous soils were obtained in the ranges of 1.849–1.999 and 1.248–1.570, respectively, which were in excellent agreement with the physical properties of the soils. In a nutshell, the numerical solution of the s-FADE with the NFR BC as the inlet boundary can be successfully applied to describe the solute transport in the homogeneous and heterogeneous soils with bounded spatial domains. 相似文献
10.
11.
Interactive Models for Ground Water Flow and Solute Transport 总被引:1,自引:0,他引:1
Tim Scheibe 《Ground water》2004,42(1):8-11
12.
The number of studies on the actual and potential environmental consequences of contaminated ground water is growing. One means of studying these consequences is through an idealized flow and transport model, S-PATHS, which allows the hydrologist to determine the salient features of contaminant migration with a minimum of data. The transport of contaminants by ground water from many waste disposal sites can be geometrically idealized as flow between a line and a circle. The flow system adjacent to the disposal site can be represented as a contaminant line source, and a downgradient pumping well as a circular sink. To study waste disposal sites on a larger scale the model geometry is reversed and the disposal site is represented as a circular source, and a river or other convenient line of evaluation is represented as a line sink. This idealization allows S-PATHS to describe the flow and transport process directly by a single partial differential expression. S-PATHS considers transmissivity, effective porosity, sorption, source strength, source concentration, decay, potentiometric gradient, circle size, and distance to the line. Coding for the model is not lengthy and can be run on a large-capacity, hand-held calculator. 相似文献
13.
14.
15.
Modeling Solute Transport in Ground Water At or Near Freezing 总被引:1,自引:0,他引:1
16.
To more accurately predict the migration behavior of pollutants in porous media, we conduct laboratory scale experiments and model simulation. Aniline (AN) is used in one-dimensional soil column experiments designed under various media and hydrodynamic conditions. The advection-dispersion equation (ADE) and the continuous-time random walk (CTRW) were used to simulate the breakthrough curves (BTCs) of the solute transport. The results show that the media and hydrodynamic conditions are two important factors affecting solute transport and are related to the degree of non-Fickian transport. The simulation results show that CTRW can more effectively describe the non-Fickian phenomenon in the solute transport process than ADE. The sensitive parameter in the CTRW simulation process is , which can reflect the degree of non-Fickian diffusion in the solute transport. Understanding the relationship of with velocity and media particle size is conducive to improving the reactive solute transport model. The results of this study provide a theoretical basis for better prediction of pollutant transport in groundwater. 相似文献
17.
18.
19.
Richard Taylor Callist Tindimugaya John Barker David Macdonald Robinah Kulabako 《Ground water》2010,48(2):284-294
Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage ΦX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied ΦX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (α) of 0.8 ± 0.1 m over a distance of 4.15 m. Specific yield (Sy) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite Sy and α are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage. 相似文献