首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Popular models for describing the luminosity-density profiles of dynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) were constructed with the desire to match the deprojected form of an   R 1/4  light profile. Real galaxies, however, are now known to have a range of different light-profile shapes that scale with mass. Consequently, although highly useful, the above models have implicit limitations, and this is illustrated here through their application to a number of real galaxy density profiles. On the other hand, the analytical density profile given by Prugniel & Simien closely matches the deprojected form of Sérsic   R 1/ n   light profiles – including deprojected exponential light profiles. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical galaxies. Moreover, the observed Sérsic quantities define the parameters of the density model. Here we provide simple equations, in terms of elementary and special functions, for the gravitational potential and force associated with this density profile. Furthermore, to match galaxies with partially depleted cores, and better explore the supermassive black hole/galaxy connection, we have added a power-law core to this density profile and derived similar expressions for the potential and force of this hybrid profile. Expressions for the mass and velocity dispersion, assuming isotropy, are also given. These spherical models may also prove appropriate for describing the dark matter distribution in haloes formed from ΛCDM cosmological simulations.  相似文献   

2.
Studies of strong gravitational lensing in current and upcoming wide and deep photometric surveys, and of stellar kinematics from (integral-field) spectroscopy at increasing redshifts, promise to provide valuable constraints on galaxy density profiles and shapes. However, both methods are affected by various selection and modelling biases, which we aim to investigate in a consistent way. In this first paper in a series, we develop a flexible but efficient pipeline to simulate lensing by realistic galaxy models. These galaxy models have separate stellar and dark matter components, each with a range of density profiles and shapes representative of early-type, central galaxies without significant contributions from other nearby galaxies. We use Fourier methods to calculate the lensing properties of galaxies with arbitrary surface density distributions, and Monte Carlo methods to compute lensing statistics such as point-source lensing cross-sections. Incorporating a variety of magnification bias modes lets us examine different survey limitations in image resolution and flux. We rigorously test the numerical methods for systematic errors and sensitivity to basic assumptions. We also determine the minimum number of viewing angles that must be sampled in order to recover accurate orientation-averaged lensing quantities. We find that for a range of non-isothermal stellar and dark matter density profiles typical of elliptical galaxies, the combined density profile and corresponding lensing properties are surprisingly close to isothermal around the Einstein radius. The converse implication is that constraints from strong lensing and/or stellar kinematics, which are indeed consistent with isothermal models near the Einstein radius, cannot trivially be extrapolated to smaller and larger radii.  相似文献   

3.
We present an overview of the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). STAGES is a multiwavelength project designed to probe physical drivers of galaxy evolution across a wide range of environments and luminosity. A complex multicluster system at   z ∼ 0.165  has been the subject of an 80-orbit F606W Hubble Space Telescope (HST) /Advanced Camera for Surveys (ACS) mosaic covering the full     span of the supercluster. Extensive multiwavelength observations with XMM–Newton , GALEX, Spitzer , 2dF, Giant Metrewave Radio Telescope and the 17-band COMBO-17 photometric redshift survey complement the HST imaging. Our survey goals include simultaneously linking galaxy morphology with other observables such as age, star formation rate, nuclear activity and stellar mass. In addition, with the multiwavelength data set and new high-resolution mass maps from gravitational lensing, we are able to disentangle the large-scale structure of the system. By examining all aspects of an environment we will be able to evaluate the relative importance of the dark matter haloes, the local galaxy density and the hot X-ray gas in driving galaxy transformation. This paper describes the HST imaging, data reduction and creation of a master catalogue. We perform the Sérsic fitting on the HST images and conduct associated simulations to quantify completeness. In addition, we present the COMBO-17 photometric redshift catalogue and estimates of stellar masses and star formation rates for this field. We define galaxy and cluster sample selection criteria, which will be the basis for forthcoming science analyses, and present a compilation of notable objects in the field. Finally, we describe the further multiwavelength observations and announce public access to the data and catalogues.  相似文献   

4.
The huge size and uniformity of the Sloan Digital Sky Survey (SDSS) make possible an exacting test of current models of galaxy formation. We compare the predictions of the galform semi-analytical galaxy formation model for the luminosities, morphologies, colours and scalelengths of local galaxies. galform models the luminosity and size of the disc and bulge components of a galaxy, and so we can compute quantities which can be compared directly with SDSS observations, such as the Petrosian magnitude and the Sérsic index. We test the predictions of two published models set in the cold dark matter cosmology: the Baugh et al. model, which assumes a top-heavy initial mass function (IMF) in starbursts and superwind feedback, and the Bower et al. model, which uses active galactic nucleus feedback and a standard IMF. The Bower et al. model better reproduces the overall shape of the luminosity function, the morphology–luminosity relation and the colour bimodality observed in the SDSS data, but gives a poor match to the size–luminosity relation. The Baugh et al. model successfully predicts the size–luminosity relation for late-type galaxies. Both models fail to reproduce the sizes of bright early-type galaxies. These problems highlight the need to understand better both the role of feedback processes in determining galaxy sizes, in particular the treatment of the angular momentum of gas reheated by supernovae, and the sizes of the stellar spheroids formed by galaxy mergers and disc instabilities.  相似文献   

5.
Popular models for describing the luminosity–density profiles of dynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) were constructed to match the deprojected form of de Vaucouleurs' R 1/4 light-profile. However, we now know that elliptical galaxies and bulges display a mass-dependent range of structural profiles. To compensate this, the model in Terzić & Graham was designed to closely match the deprojected form of Sérsic R 1/ n light-profiles, including deprojected exponential light-profiles and galaxies with partially depleted cores. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, both 'power-law' and 'core' elliptical galaxies, also dark matter haloes formed from Λ cold dark matter cosmological simulations. In this paper, we present a new family of triaxial density–potential–force triplets, which generalizes the spherical model reported in Terzić & Graham to three dimensions. If the (optional) power-law core is present, it is a five-parameter family, while in the absence of the core it reduces to three parameters. The isodensity contours in the new family are stratified on confocal ellipsoids and the potential and forces are expressed in terms of integrals which are easy to evaluate numerically. We provide the community with a suite of numerical routines for orbit integration, which feature: optimized computations of potential and forces for this family; the ability to run simulations on parallel platforms; and modular and easily editable design.  相似文献   

6.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M/L is assumed, the required mass of the dark halo is     , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is     . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax.  相似文献   

7.
The precision study of dark matter using weak lensing by large-scale structure is strongly constrained by the accuracy with which one can measure galaxy shapes. Several methods have been devised but none has demonstrated the ability to reach the level of precision required by future weak lensing surveys. In this paper, we explore new avenues to the existing 'Shapelets' approach, combining a priori knowledge of the galaxy profile with the power of orthogonal basis function decomposition. This paper discusses the new issues raised by this matched filter approach and proposes promising alternatives to shape measurement techniques. In particular, it appears that the use of a matched filter (e.g. Sérsic profile) restricted to elliptical radial fitting functions resolves several well-known Shapelet issues.  相似文献   

8.
We have investigated the structural and dynamical properties of triaxial stellar systems whose surface brightness profiles follow the   r 1/ n   luminosity law – extending the analysis by Ciotti, who explored the properties of spherical   r 1/ n   systems. A new analytical expression that accurately reproduces the spatial (i.e., deprojected) luminosity density profiles (error less than 0.1 per cent) is presented for detailed modelling of the Sérsic family of luminosity profiles. We evaluate both the symmetric and the non-axisymmetric components of the gravitational potential and force, and compute the torques as a function of position. For a given triaxiality, stellar systems with smaller values of n have a greater non-axisymmetric gravitational field component . We also explore the strength of the non-axisymmetric forces produced by bulges with differing n and triaxiality on systems having a range of bulge-to-disc ratios. The increasing disc-to-bulge ratio with increasing galaxy type (decreasing n ) is found to greatly reduce the amplitude of the non-axisymmetric terms, and therefore reduce the possibility that triaxial bulges in late-type systems may be the mechanism or perturbation for non-symmetric structures in the disc.
Using seeing-convolved   r 1/ n   -bulge plus exponential-disc fits to the K -band data from a sample of 80 nearby disc galaxies, we probe the relations between galaxy type, Sérsic index n and the bulge-to-disc luminosity ratio. These relations are shown to be primarily a consequence of the relation between n and the total bulge luminosity. In the K band, the trend of decreasing bulge-to-disc luminosity ratio along the spiral Hubble sequence is predominantly, though not entirely, a consequence of the change in the total bulge luminosity; the trend between the total disc luminosity and Hubble type is much weaker.  相似文献   

9.
Gravitational lensing deflects light. A single lens deflector can only shear images, but cannot induce rotations. Multiple lens planes can induce rotations. Such rotations can be observed in quadruply imaged sources, and can be used to distinguish between two proposed solutions of the flux anomaly problem: substructures in lensing galaxies versus large-scale structure. We predict the expected amount of rotation due to large-scale structure in strong lensing systems, and show how this effect can be measured using ∼mas very long baseline interferometry astrometry of quadruple lenses with extended source structures. The magnitude of rotation is around 1°. The biggest theoretical uncertainty is the power spectrum of dark matter on very small scales. This procedure can potentially be turned around to measure the dark matter power spectrum on very small scales. We list the predicted rms rotation angles for several quadruple lenses with known lens and source redshifts.  相似文献   

10.
Measuring the integrated stellar halo light around galaxies is very challenging. The surface brightness of these haloes is expected to be many magnitudes below dark sky and the central brightness of the galaxy. Here, I show that in some of the recent literature the effect of very extended Point Spread Function (PSF) tails on the measurements of halo light has been underestimated; especially in the case of edge-on disc galaxies. The detection of a halo along the minor axis of an edge-on galaxy in the Hubble Ultra Deep Field can largely be explained by scattered galaxy light. Similarly, depending on filter and the shape one assumes for the uncertain extended PSF, 20–80 per cent of the halo light found along the minor axis of scaled and stacked Sloan Digital Sky Survey (SDSS) edge-on galaxy images can be explained by scattered galaxy light. Scattered light also significantly contributes to the anomalous halo colours of stacked SDSS images. The scattered light fraction decreases when looking in the quadrants away from the minor axis. The remaining excess light is well modelled with a Sérsic profile halo with shape parameters based on star count halo detections of nearby galaxies. Even though, the contribution from PSF scattered light does not fully remove the need for extended components around these edge-on galaxies, it will be very challenging to make accurate halo light shape and colour measurements from integrated light without very careful PSF measurements and scattered light modelling.  相似文献   

11.
We investigate gravitational lensing using a realistic model of disc galaxies. Most of the mass is contained in a large spherical isothermal dark matter halo, but the potential is modified significantly in the core by a gravitationally dominant exponential disc. The method used is adapted from a very general multilens ray-tracing technique developed by Mo¨ller. We investigate the effects of the disc-to-halo mass ratio, the disc scalelength, the disc inclination to the line of sight and the lens redshift on two strong-lensing cross-sections: the cross-section for multiple imaging and the cross-section for large magnifications, in excess of a factor of 10. We find that the multiple-imaging cross-section can be enhanced significantly by an almost edge-on Milky Way disc compared with a singular isothermal sphere (SIS) in individual cases; however, when averaged over all disc inclinations, the cross-section is only increased by about 50 per cent. These results are consistent with other recent work. The presence of a disc, however, increases the inclination-averaged high-magnification cross-section by an order of magnitude compared with a SIS. This result has important implications for magnification bias in future lens surveys, particularly those in the submillimetre waveband, where dust extinction in the lensing galaxy has no effect on the brightness of the images.  相似文献   

12.
Elliptical galaxies are modelled as Sérsic luminosity distributions with density profiles (DPs) for the total mass adopted from the DPs of haloes within dissipationless ΛCDM (cold dark matter) N -body simulations. Ellipticals turn out to be inconsistent with cuspy low-concentration NFW models representing the total mass distribution, neither are they consistent with a steeper −1.5 inner slope, nor with the shallower models proposed by Navarro et al., nor with NFW models 10 times more concentrated than predicted, as deduced from several X-ray observations – the mass models, extrapolated inwards, lead to local mass-to-light ratios that are smaller than the stellar value inside an effective radius ( R e), and to central aperture velocity dispersions that are much smaller than observed. This conclusion remains true as long as there is no sharp steepening (slope < −2) of the dark matter DPs just inside 0.01 virial radii.
The very low total mass and velocity dispersion produced within R e by an NFW-like total mass profile suggests that the stellar component should dominate the dark matter component out to at least R e. It should then be difficult to kinematically constrain the inner slope of the DP of ellipticals. The high-concentration parameters deduced from X-ray observations appear to be a consequence of fitting an NFW model to the total mass DP made up of a stellar component that dominates inside and a dark matter component that dominates outwards.
An appendix gives the virial mass dependence of the concentration parameter, central density and total mass of the Navarro et al. model. In a second appendix are given single integral expressions for the velocity dispersions averaged along the line of sight, in circular apertures and in thin slits, for general luminosity density and mass distributions, with isotropic orbits.  相似文献   

13.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

14.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

15.
Weak gravitational lensing is now established as a powerful method to measure mass fluctuations in the universe. It relies on the measurement of small coherent distortions of the images of background galaxies. Even low-level correlations in the intrinsic shapes of galaxies could however produce a significant spurious lensing signal. These correlations are also interesting in their own right, since their detection would constrain models of galaxy formation. Using     haloes found in N -body simulations, we compute the correlation functions of the intrinsic ellipticity of spiral galaxies assuming that the disc is perpendicular to the angular momentum of the dark matter halo. We also consider a simple model for elliptical galaxies, in which the shape of the dark matter halo is assumed to be the same as that of the light. For deep lensing surveys with median redshifts ∼1, we find that intrinsic correlations of ∼10−4 on angular scales     are generally below the expected lensing signal, and contribute only a small fraction of the excess signals reported on these scales. On larger scales we find limits to the intrinsic correlation function at a level ∼10−5, which gives a (model-dependent) range of separations for which the intrinsic signal is about an order of magnitude below the ellipticity correlation function expected from weak lensing. Intrinsic correlations are thus negligible on these scales for dedicated weak lensing surveys. For wider but shallower surveys such as SuperCOSMOS, APM and SDSS, we cannot exclude the possibility that intrinsic correlations could dominate the lensing signal. We discuss how such surveys could be used to calibrate the importance of this effect, as well as study spin–spin correlations of spiral galaxies.  相似文献   

16.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

17.
Central gravitational image detection is very important for the study of the mass distribution of the inner parts (∼100 pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive Very Long Baseline Array and global very long baseline interferometry (VLBI) observations, and careful consideration is given to the effects of noise, clean ing and self-calibration. An upper limit is derived for the strength of the central image of 180 μJy (90 per cent confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of ∼103 for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope β of the lensing galaxy mass profile, and its break radius r b. For   r b > 130 pc  the power-law slope is required to be close to isothermal  (β > 1.8)  . A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is ∼10 times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter image A. The B jet remains unresolved, as expected from a simple lens model of the system.  相似文献   

18.
The Hubble constant can be constrained using the time delays between multiple images of gravitationally lensed sources. In some notable cases, typical lensing analyses assuming isothermal galaxy density profiles produce low values for the Hubble constant, inconsistent with the result of the HST Key Project  (72 ± 8 km s−1 Mpc−1)  . Possible systematics in the values of the Hubble constant derived from galaxy lensing systems can result from a number of factors, for example, neglect of environmental effects, assumption of isothermality, or contamination by line-of-sight structures. One additional potentially important factor is the triaxial structure of the lensing galaxy halo; most lens models account for halo shape simply by perturbing the projected spherical lensing potential, an approximation that is often necessary but that is inadequate at the levels of triaxiality predicted in the cold dark matter paradigm. To quantify the potential error introduced by this assumption in estimates of the Hubble parameter, we strongly lens a distant galaxy through a sample of triaxial softened isothermal haloes and use an Markov Chain Monte Carlo method to constrain the lensing halo profile and the Hubble parameter from the resulting multiple image systems. We explore the major degeneracies between the Hubble parameter and several parameters of the lensing model, finding that without a way to accurately break these degeneracies accurate estimates of the Hubble parameter are not possible. Crucially, we find that triaxiality does not significantly bias estimates of the Hubble constant, and offer an analytic explanation for this behaviour in the case of isothermal profiles. Neglected triaxial halo shape cannot contribute to the low Hubble constant values derived in a number of galaxy lens systems.  相似文献   

19.
The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise as a result of spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line of sight. The lensing contribution to the two-point autocorrelation function is typically small compared with the gravitational clustering. However, the cross-correlation between two galaxy samples is almost unaffected by gravitational clustering provided that their redshift distributions do not overlap. The cross-correlation is then induced by magnification bias resulting from lensing by large-scale structure. We compute the expected amplitude of the cross-correlation for popular theoretical models of structure formation. For two populations with mean redshifts of ≃0.3 and 1, we find a cross-correlation signal of ≃1 per cent on arcmin scales and ≃3 per cent on scales of a few arcsec. The dependence on the cosmological parameters Ω and Λ, the dark matter power spectrum and the bias factor of the foreground galaxy population is explored.  相似文献   

20.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号