首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The effect of solar radiation on two typical external surfaces of a spacecraft is studied using numerical simulation by considering real geometry (geometry deviation from the nominal shape). The results of simulation are presented in this paper. Geometry deviations are simulated by two types of regular external heterogeneities. We compare the force and torque characteristics of solar radiation on nonuniform surfaces with similar characteristics for nominal surfaces and we find that the disagreement between them can reach 90% both in absolute value and sign. This means that it is necessary to consider the deviations in geometry from nominal for proper design and operation of spacecraft.  相似文献   

3.
Fermat's principle has been used to derive expressions for the curvature and torsion of the path of the electromagnetic radiation in a medium of refractive indexn (= function of space coordinates). Levi-Civita's notion of parallelism further, in conjunction with Brill's results (cf. reference in text) have enabled the derivation (1) of Einstein's formula for the deflection of light, and (2) an expression for the rotation of the plane of polarization, an entirely general relativistic effect, unaccountable in Newtonian physics. Finally, the idea is put forward that the observed rotation of polarization in pulsars might be a purely general relativistic effect due to the non-Minkowskian geometry around them.  相似文献   

4.
We study relativistically expanding electromagnetic fields of cylindrical geometry. The fields emerge from the side surface of a cylinder and are invariant under translations parallel to the axis of the cylinder. The expansion velocity is in the radial direction and is parametrized by   v = R /( ct )  . We consider force-free magnetic fields by setting the total force the electromagnetic field exerts on the charges and the currents equal to zero. Analytical and semi-analytical separable solutions are found for the relativistic problem. In the non-relativistic limit, the mathematical form of the equations is similar to equations that have already been studied in static systems of the same geometry.  相似文献   

5.
The properties of cylindrical and spherical ion acoustic solitary waves (IASWs) are investigated in a three-component unmagnetized, collisionless plasma consisting of warm ion fluid and superthermally distributed electrons and positrons in a nonplanar cylindrical or spherical geometry. Using the reductive perturbation technique, the nonplanar cylindrical and spherical Korteweg-de Vries (KdV) equations are derived. The effects of spectral index of electron and positron, and other plasma parameters are studied. It is found that both negative as well as positive solitary potential structures are formed in nonplanar geometries. The numerical solution shows that amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry. Numerical results indicate that the amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry.  相似文献   

6.
We have derived the equations which govern the linear nonadiabatic general-relativistic radial oscillations. The perturbation produces a heat flux that is coupled with the geometry, through the Einstein field equations of a stellar configuration. The classical limit is recovered. The stability conditions are examined by means of a simplified one-zone model.  相似文献   

7.
We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.  相似文献   

8.
The space and initial singularities are reexamined in the most reliable solutions to the Einstein's field equations (EFE), that is, the Einstein–Gilbert–Straus (EGS) metric. In discretized Finsler geometry, additional curvatures and thereby geometric structures likely emerge, which are distinct from the conventional spacetime curvatures and geometric structures that the Einstein's theory of general relativity introduced. The generalized fundamental tensor, which is obtained in the Fisleriean geometry, imposes quantum-mechanically revisions on the Landau–Raychaudhuri evolution equations. The time-like geodesic congruence in EGS metric is then analyzed, analytically and numerically. The evolution of a family of trajectories whose congruence is defined by the flow lines generated by velocity fields is determined. We conclude that both two types of singularities seem to be attenuated or even regulate. With the singularity attenuation, we refer to the fundamental nature of the additional curvatures at quantum relativistic scales.  相似文献   

9.
The inhomogeneous Bianchi-I model based on Lyra's geometry has been studied in the cosmological theory in presence of a massless inhomogeneous scalar field whose potential has a flat part. The field equations are solved using separation of variables and it is shown that one of the time part of the field equations are solvable for any arbitrary other cosmic scale function. Solutions for a particular form of cosmic scale (time part) is presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A reductive perturbation technique is employed to solve the fluid-Poisson equations in spherical geometry describing a weakly nonlinear electron–acoustic (EA) waves in unmagnetized plasma consisting of stationary ions, cold electrons and kappa distributed hot electrons. It is shown that a variable coefficient Kadomtsev–Petviashvili (KP) equation governs the evolution of scalar potential describing propagation of EA waves. The influence of suprathermality and geometry effects on propagation of EA solitary waves is investigated. We found that when electrons evolve toward their thermodynamic equilibrium, EA solitons are generated with large amplitudes. Also it is shown that EA solitary structures can be significantly modified by transverse perturbations.  相似文献   

11.
This paper analyzes transversal small-scale perturbations in arbitrary three-dimensional (3D) spatially nonuniform space plasma systems with magnetic surfaces and deduces a system of equations for these perturbations. It shows that a dipole magnetic field can have perturbations of two different polarizations. Within dipole geometry, it derives equations for MHD-eigenmodes and investigates stability of the perturbations.  相似文献   

12.
The three-dimensional inverse problem is investigated. A quasi-linear system of partial differential equations is derived for the determination of the potential. The solution of this system is studied by a method of differential geometry. A necessary condition for the solution is derived and the determination of the potential is reduced to algebraic equations written in vectorial form. A few examples are also given.  相似文献   

13.
The absolute tensorial equations describing the dynamics of a superfluid in general relativity have been brought into the same form as the corresponding classical equations written in 3-vector forms. The expressions of the various forces acting on an element of a superfluid are explicitly displayed. In the Newtonian limit, these equations give the classical equations of motion of a superfluid in Galilean spacetime.  相似文献   

14.
A theoretical analysis based on the equations of magnetofluid-dynamics is undertaken, in order to completely classify the geometry of the motion admitted by this pattern.  相似文献   

15.
We have found for the first time a Balmer-edge feature in the polarized flux spectrum of a quasar (Ton 202). The edge feature is seen as a discontinuity in the slope, rather than as a discontinuity in the absolute flux. As the polarized flux contains essentially no broad emission lines, it is considered to arise interior to the broad emission line region, showing the spectrum with all the emissions outside the nucleus scraped off and removed. Therefore, the polarized flux spectrum is likely to reveal features intrinsic to the big blue bump emission. In this case, the existence of the Balmer-edge feature, seen in absorption in the shorter wavelength side, indicates that the big blue bump is indeed thermal and optically thick.  相似文献   

16.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of superthermal electrons and warm ions are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries (KdV) equations for IAWs to study the propagation of two-solitons. The presence of superthermally distributed electrons is shown to influence the propagation of two-solitons in nonplanar geometry.  相似文献   

17.
In the present work the reflection of a plane shock wave is studied in order to achieve a high pressure and temperature state by a reflected shock wave. We consider the plane geometry and solve the one-dimensional, time-dependent system of hyperbolic equations by Rusanov's method.  相似文献   

18.
Watson  P.G.  Craig  I.J.D. 《Solar physics》2002,207(2):337-354
In this paper we present a new class of exact reconnection solutions in cylindrical geometry. We point out that in the case of planar reconnection there is a natural cylindrical analog to the Cartesian Dawson function model for the magnetic field. Although the resistive energy release scalings of these solutions mimic the Cartesian models an important new feature is the presence of curvature in the current sheet. We go on to show that these solutions can be generalized to three dimensions.  相似文献   

19.
In this paper exact solutions of the five-dimensional vacuum cosmological field equations based on Lyra geometry are obtained. Further it is shown that neither dust distribution nor perfect fluid distributions survive for the model. Some properties of the vacuum model are also discussed.  相似文献   

20.
We derive the equations of motion of a perfect relativistic fluid flowing down a confining channel of varying cross section. The formalism of differential geometry is employed, and we start from the conservation of energy-momentum. Applications to beam models for extragalactic double radio sources are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号