首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Gondwana Research》2010,18(4):704-714
The Iran continental crust was metamorphosed, intruded by granitoid magmas, folded and faulted during the Late Precambrian by the Pan-African Orogeny. The basement complex in the Takab Complex (northwest Iran) consists of gneisses, amphibolites, pelitic schists, meta-ultramafic and calc-silicate rocks. Geochemically, the protoliths of the Takab gneisses are slightly peraluminous and medium to high-potassic with calc-alkaline affinity. These gneisses may have been emplaced in volcanic arc tectonic setting. Furthermore, the metapelitic protolith is shale deposited in an active continental margin setting. All these characteristics, and presence of paleo-suture zone and ophiolitic rocks (i.e. serpentines, meta-mafic and meta-ultramafic rocks) around the high grade metamorphic rocks suggest that a continental-margin magmatic arc (Andean-type) formed the Takab Precambrian basement. The basement complexes are extensively overprinted by the Pan-African Orogeny and younger igneous events; this supports the inference that Early Cambrian orogenesis in the Takab Complex region of northwest Iran marks one of the fundamental lithospheric boundaries within Gondwana which belonged to a greater Late Neoproterozoic–Early Paleozoic orogenic system that was active along the Proto-Tethyan margin of the Gondwana supercontinent, extending at least from its Arabian margin to the Himalayan margin of the Indian subcontinent.  相似文献   

2.
The St. Marys Basin, along the southern flank of the composite Late Paleozoic Magdalen Basin in the Canadian Appalachians and along the Avalon-Meguma terrane boundary, contains Late Devonian-Early Carboniferous continental clastic rocks of the Horton Group that were deposited in fluvial and lacustrine environments after the peak of the Acadian orogeny. SHRIMP II (Geological Survey of Canada) data on approximately 100 detrital zircons from three samples of Horton Group rocks from the St. Marys Basin show that most of the zircons have been involved in a multistage history, recycled from clastic rocks in the adjacent Meguma and Avalonian terranes. Although there is a minor contribution from Early Silurian (411 Ma) and Late Devonian suites (ca. 380-370 Ma), Neoproterozoic (ca. 700-550 Ma) and Paleoproterozoic (ca. 2.0-2.2 Ga) zircon populations predominate, with a minor contribution from ca. 1.0-, 1.2-, and 1.8-Ga zircons. Published U-Pb single-zircon analyses on clastic sedimentary rocks indicate that the Meguma and Avalon terranes have different populations of detrital zircons, sourced from discrete portions (Amazonian and West African cratons) of the ancient Gondwanan margin. Both terranes contain Neoproterozoic and Late Archean populations. The SHRIMP data, in conjunction with published sedimentological and geochemical data, indicate that the Horton Group basin-fill sediments are largely the result of rapid uplift and erosion of Meguma terrane metasedimentary and granitoid rocks immediately to the south of the St. Marys Basin during the waning stages of the Acadian orogeny. Regional syntheses indicate that this uplift occurred before and during deposition and was a consequence of dextral ramping of the Meguma terrane over the Avalon terrane along the southern flank of the Magdalen Basin.  相似文献   

3.
High‐P/low‐T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560–550 Ma volcanic and sedimentary rocks and co‐magmatic plutonic units of the Caledonian terrane. The HMS consists of albite‐ and garnet‐porphyroblastic mica schist, with minor marble, calc‐silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc‐silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618–615 Ma, a minimum age for high‐P/low‐T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625–600 Ma subduction‐generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic‐Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now‐adjacent Brookville terrane.  相似文献   

4.
New data on composition and age of Precambrian granites and volcanic rocks in the southern part of the Lyapin structure (Northern Urals) are considered. The geochemical features of the igneous rocks are similar to those of the rocks formed in both divergent and convergent environments. In the Late Precambrian (583–553 Ma), the investigated area is assumed to have been a part of the active margin above the mantle plume.  相似文献   

5.
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia.  相似文献   

6.
彭素霞 《地质与勘探》2012,48(2):250-258
[摘 要]本文主要在先前一些研究者对北祁连山加里东造山带的构造、海相火山岩和块状硫化矿床研究所获成果和认识的基础上,重点从造山带的前寒武纪基底的物性特征,来分析和讨论所见不同时代地层中的变火山岩类的物源区及形成机制,进而提出一些区域找矿思路。所得结论主要包括:(1) 北祁连山加里东造山的真正基底应是从阿拉善或华北地块分裂出来的一套绿岩类型火山沉积建造,并以古元古宙的北大河群和龙首山群为代表;(2)北祁连造山带的基底从克拉通向大陆裂谷构造体制转换大致发生在早-中元古宙的分界时限(约1777Ma),并普遍以一套大陆裂谷型双峰式火山岩组合为典型特征;(3)不同时代或不同构造体制下形成的火山岩,各有其不同的物源区和成岩模式。具体说,在元古宙 绿岩类型的火山岩的源区可能是克拉通早期由原始玄武质下地壳转变来榴辉岩或基性麻粒岩相,进入大陆裂谷构造体阶段,便转换为一种幔-壳双层岩源区模型,而晚期的次火山岩类的源岩明显是已经过先期大量改造或改变了中上地壳物质作为物源;(4) 按大陆裂谷成矿体系并结合以往一些区域调查资料,提出托莱山西段的小龙口-九个青羊地段可能是个与海相火山岩有关的块状硫化物矿床潜在远景找矿地段。  相似文献   

7.
Fragments of continental blocks or microcontinents are represented in the Early Caledonian orogenic area of Central Asia (or Early Caledonian superterrane); the largest of these are the Dzabkhan and Tuva-Mongolian microcontinents, with Early and Late Precambrian crystalline basements, respectively. In the linkage zone of these microcontinents, crystalline rocks of the Tarbagatai and Songino blocks that are considered as units of the Early Precambrian ensialic basement of the superterrane are also known. They are composed of strongly metamorphosed rocks formed during the Early Baikalian orogeny about 790 to 820 Ma. U-Pb zircon dating and Nd isotope studies revealed, within the northwestern Dzabkhan microcontinent, the Dzabkhan-Mandal zone of crystalline rocks associated with the Riphean crust-forming process. The age of the gneiss substrate of this zone is estimated as 1.3 to 0.86 Ga. An early episode of metamorphism is dated at about 856 ± 2 Ma. The data available so far indicate a heterogeneous structure of the Dzabkhan microcontinent basement represented by Early Precambrian and Early and Late Baikalian crystalline formations.  相似文献   

8.
New data on the stratigraphy, structure, isotopic age, geochemistry, and geodynamic characteristics of the lithotectonic complexes of the Baikal-Vitim Fold System are reported. In particular, it is shown that Middle and Upper Paleozoic rocks are widespread along with Precambrian and Lower Paleozoic sequences. The Baikal-Vitim Fold System is characterized by cyclic evolution and comprises four structural stages: Baikalian (Riphean-Vendian), Caledonian (Cambrian-Early Silurian), Variscan (Late Silurian-Early Carboniferous), and Hercynian (Middle Carboniferous-Permian). A specific set of lithotectonic complexes formed in certain geodynamic settings corresponds to each stage. According to the proposed model, the Variscan and Hercynian complexes developed under conditions of progressively changing geodynamic settings of passive (Late Silurian-Middle Devonian), Andean-type active (Middle Devonian-Early Carboniferous), and Californian-type (Middle Carboniferous-Permian) continental margins. The Middle and Late Paleozoic evolution of the Baikal-Vitim Fold System is correlated with that of the Mongolia-Okhotsk Belt (Aga paleooceanic basin).  相似文献   

9.
The crystalline sheet of the Higher Himalaya, referred to as the Central Crystallines, is a continuous lithotectonic unit which can be traced from the River Kali of eastern Kumaun in the east to Sankoo in the Suru River valley of Kashmir in the west. The principal lithostratigraphic units of this zone are pelites, psammites, gneisses, amphibolites, migmatites and leucocratic granites. The rocks of this zone show progressive regional metamorphism of normal as well as reverse types, the metamorphic grade ranging from chlorite to sillimanite zone. The Main Central Thrust, which demarcates the southern boundary of the Central Crystallines, has brought the crystalline rocks to rest over the sediments of Deoban Group in Kumaun and Garhwal and over the Outer Crystallines (=Chail-Jutogh Nappe) in Himachal Pradesh. The evidence obtained from metamorphism, deformation and radiometric dating indicate that the Central Crystallines is an old Precambrian basement which has been reactivated during Caledonian and Alpine orogenic movements.  相似文献   

10.
To evaluate the scale of tectonic movements within the northern sector of the 500-400 Ma Caledonian orogenic belt and its Precambrian foreland zone between the Great Glen Fault (GGF) zone to the southeast and the Laurentian Block to the northwest, we have studied the palaeomagnetism of minor intrusive rocks within the Northern Highlands terrain. These rocks include
1. (1) amphibolites and other metamorphic rocks predating deformation,
2. (2) microdiorities, dolentes and related suites emplaced, and probably magnetised, between 450 and 420 Ma, and
3. (3) Lower-Middle Devonian lamprophyres.
A range of predominantly NNE negative and SSW positive components are resolved by cleaning treatment with a dispersion of declinations towards a minority WNW-ESE axis; isolated southerly negative directed hematite-held components suggests limited, but no widespread, remagnetisation in Devonian-Carboniferous times.Comparison is made with data from other tectonic divisions in the Caledonian orogenic belt and the bordering forelands. Palaeopoles from the Northern Highlands closely conform in part with North American Ordovician poles and in part with the post-Ordovician palaeopoles from Britain south of the GGF. The definitive motions of the British Caledonides to emerge from the palaeomagnetic analysis are an anticlockwise rotation of the Caledonian terrain in early Ordovician times, small relative motions during the remainder of Ordovician times followed by large clockwise and then anticlockwise rotations during late Ordovician to early Silurian times contemporary with the last major movements on the Moine Thrust (ca. 430 Ma). Late Silurian-Devonian movements along the GGF were probably below the limits of palaeomagnetic detectability. The collective data require that apparent polar wander movements and concomitant continental movements have currently been incompletely recovered by North American studies and the path for Lower Palaeozoic times is more complex than recognised hitherto.  相似文献   

11.
The Derba block is one of the largest Precambrian terranes of the Sayan-Yenisei accretionary belt in the southwestern margin of the Siberian Platform. It is composed of metamorphosed terrigenous-carbonate rocks of the Sayan Group, injected by granitoids. The geochemical features of gneiss-schist associations indicate the low maturity of their sedimentary protoliths corresponding in composition mainly to graywackes and terrigenous-carbonate rocks (marls). According to the results of U-Pb (LA-ICP-MS) dating of detrital zircons from gneisses and schists, the sedimentary protolith formed in the Vendian. Neoproterozoic subduction complexes were probably the major provenance for terrigenous material, and Early Precambrian rocks made a limited contribution. The Ar-Ar and U-Pb isotope data testify to nearly coeval and multistage events of metamorphism (up to the amphibolite facies) and granitoid magmatism (~ 510-500 and 480-465 Ma) in the Derba block. These processes were reflective of the Early Caledonian orogenic processes in the structures of the Central Asian Orogenic Belt. The similarity in the composition, time of sedimentation, and provenances of metaterrigenous-carbonate complexes of the Derba block (Sayan Group), West Sangilen block of the Tuva-Mongolian massif (Erzin and Moren complexes), and the Khamar-Daban terrane (Slyudyanka Group) suggests that these structures were a single Vendian continental margin with lateral variations in depositional environments and the sources of terrigenous material.  相似文献   

12.
笔者根据国内外研究进展和区域地质对比,将特提斯中西段的古生代构造域划分为Iapetus-Tornquist洋加里东造山带、Rheic洋华力西期造山带、乌拉尔-天山中亚造山带和古特提斯Pontides-高加索-Mashhad造山带,并提出4个初步认识:(1)Rodinia超大陆在新元古代裂解形成的原特提斯大洋在欧洲以Ia...  相似文献   

13.
华北克拉通南缘豫西地区保存有较为完整的变质结晶基底和中-新元古代沉积盖层,记录了重要的前寒武纪构造演化信息。近年来的年龄研究结果表明原认为是中-新元古代的汝阳群-洛峪群可能形成于中元古代早期(1. 75~1. 60Ga),而沿着华北克拉通南缘与秦岭造山带的拼合带(洛南-栾川断裂带)分布的新元古代盖层(主要为栾川群)的形成时代尚不明确。华北南缘新元古代栾川群主要由大理岩、片岩、千枚岩和碱性火山岩组成,其上部大红口组火山岩以碱性粗面质岩石为主,高硅富钾,与侵入到栾川群中下部的辉长岩构成典型的双峰式岩石组合。栾川群大红口组三个粗面岩样品的锆石U-Pb年龄分别为840±4Ma、845±5Ma和846±6Ma,结合已有的栾川群下伏地层最年轻的碎屑锆石年龄结果(~1000Ma),限定栾川群归属于新元古代早期(1000~840Ma)。大红口组岩浆岩的岩石组合和地球化学特征表明其形成于板内裂谷环境,根据区域构造资料以及前人的研究成果,栾川群火山岩与北秦岭同时期的岩浆活动共同指示了华北南缘与北秦岭在~845Ma均处于板内拉张阶段。  相似文献   

14.
《Gondwana Research》2014,26(4):1680-1689
In southern Tibet, Late Triassic sequences are especially important to understanding the assembly of the Lhasa terrane prior to Indo-Asian collision. We report new data relevant to the provenance of a Late Triassic clastic sequence from the Mailonggang Formation in the central Lhasa terrane, Tibet. Petrographic studies and detrital heavy mineral assemblages indicate a proximal orogenic provenance, including volcanic, sedimentary and some ultramafic and metamorphic rocks. In situ detrital zircon Hf and U–Pb isotope data are consistent with derivation of these rocks from nearby Triassic magmatic rocks and basement that comprise part of the newly recognized Late Permian–Triassic Sumdo–Cuoqen orogenic belt. The new data suggests correlation with the Upper Triassic Langjiexue Group which lies on the opposing (southern) side of Indus–Yarlung ophiolite. Sediments from both the Mailonggang Formation and Langjiexue Group are interpreted to represent formerly contiguous parts of a sequence deposited on the southern flanks of the Sumdo–Cuoqen belt.  相似文献   

15.
The northern part of the Tasman Fold Belt System in Queensland comprises three segments, the Thomson, Hodgkinson- Broken River, and New England Fold Belts. The evolution of each fold belt can be traced through pre-cratonic (orogenic), transitional, and cratonic stages. The different timing of these stages within each fold belt indicates differing tectonic histories, although connecting links can be recognised between them from Late Devonian time onward. In general, orogenesis became younger from west to east towards the present continental margin. The most recent folding, confined to the New England Fold Belt, was of Early to mid-Cretaceous age. It is considered that this eastward migration of orogenic activity may reflect progressive continental accretion, although the total amount of accretion since the inception of the Tasman Fold Belt System in Cambrian time is uncertain.The Thomson Fold Belt is largely concealed beneath late Palaeozoic and Mesozoic intracratonic basin sediments. In addition, the age of the more highly deformed and metamorphosed rocks exposed in the northeast is unknown, being either Precambrian or early Palaeozoic. Therefore, the tectonic evolution of this fold belt must remain very speculative. In its early stages (Precambrian or early Palaeozoic), the Thomson Fold Belt was probably a rifted continental margin adjacent to the Early to Middle Proterozoic craton to the west and north. The presence of calc-alkaline volcanics of Late Cambrian Early Ordovician and Early-Middle Devonian age suggests that the fold belt evolved to a convergent Pacific-type continental margin. The tectonic setting of the pre-cratonic (orogenic) stage of the Hodgkinson—Broken River Fold Belt is also uncertain. Most of this fold belt consists of strongly deformed, flysch-type sediments of Silurian-Devonian age. Forearc, back-arc and rifted margin settings have all been proposed for these deposits. The transitional stage of the Hodgkinson—Broken River Fold Belt was characterised by eruption of extensive silicic continental volcanics, mainly ignimbrites, and intrusion of comagmatic granitoids in Late Carboniferous Early Permian time. An Andean-type continental margin model, with calc-alkaline volcanics erupted above a west-dipping subduction zone, has been suggested for this period. The tectonic history of the New England Fold Belt is believed to be relatively well understood. It was the site of extensive and repeated eruption of calc-alkaline volcanics from Late Silurian to Early Cretaceous time. The oldest rocks may have formed in a volcanic island arc. From the Late Devonian, the fold belt was a convergent continental margin above a west-dipping subduction zone. For Late Devonian- Early Carboniferous time, parallel belts representing continental margin volcanic arc, forearc basin, and subduction complex can be recognised.A great variety of mineral deposits, ranging in age from Late Cambrian-Early Ordovician and possibly even Precambrian to Early Cretaceous, is present in the exposed rocks of the Tasman Fold Belt System in Queensland. Volcanogenic massive sulphides and slate belt-type gold-bearing quartz veins are the most important deposits formed in the pre-cratonic (orogenic) stage of all three fold belts. The voicanogenic massive sulphides include classic Kuroko-type orebodies associated with silicic volcanics, such as those at Thalanga (Late Cambrian-Early Ordovician. Thomson Fold Belt) and at Mount Chalmers (Early Permian New England Fold Belt), and Kieslager or Besshi-type deposits related to submarine mafic volcanics, such as Peak Downs (Precambrian or early Palaeozoic, Thomson Fold Belt) and Dianne. OK and Mount Molloy (Silurian—Devonian, Hodgkinson Broken River Fold Belt). The major gold—copper orebody at Mount Morgan (Middle Devonian, New England Fold Belt), is considered to be of volcanic or subvolcanic origin, but is not a typical volcanogenic massive sulphide.The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusives of the transitional tectonic stage of the three fold belts, particularly the Late Carboniferous Early Perman of the Hodgkinson—Broken River Fold Belt and the Late Permian—Middle Triassic of the southeast Queensland part of the New England Fold Belt. In general, these deposits are small but rich. They include tin, tungsten, molybdenum and bismuth in granites and adjacent metasediments, base metals in contact meta somatic skarns, gold in volcanic breccia pipes, gold-bearing quartz veins within granitoid intrusives and in volcanic contact rocks, and low-grade disseminated porphyry-type copper and molybdenum deposits. The porphyry-type deposits occur in distinct belts related to intrusives of different ages: Devonian (Thomson Fold Belt), Late Carboniferous—Early Permian (Hodgkinson—Broken River Fold Belt). Late Permian Middle Triassic (southeast Queensland part of the New England Fold Belt), and Early Cretaceous (northern New England Fold Belt). All are too low grade to be of economic importance at present.Tertiary deep weathering events were responsible for the formation of lateritic nickel deposits on ultramafics and surficial manganese concentrations from disseminated mineralisation in cherts and jaspers.  相似文献   

16.
秦岭岩群被认为是出露于北秦岭地体内最古老的前寒武纪基底岩石,记录了北秦岭造山带的地壳形成和演化历史。本文报道丹凤-西峡地区五件秦岭岩群片麻岩锆石U-Pb年龄结果,限定其形成和变质时代,探讨北秦岭地体的构造归属。定年结果表明,岩浆成因锆石颗粒的年龄集中在1400~1600Ma左右和850~950Ma左右,记录两期主要岩浆活动。6粒锆石具有变质成因特征,低Th/U比值(0.03),206Pb/238U年龄变化在510~465Ma之间,加权平均值477±18Ma。这一古生代变质叠加时代与北秦岭地体南北缘高压变质作用时代基本一致,说明秦岭岩群遭受到北秦岭造山带俯冲-碰撞造山过程的变质作用。秦岭岩群主要形成于中元古代晚期至新元古代早期,基底岩石缺乏早元古代和太古代岩浆活动的记录。在岩浆作用时代上,北秦岭地体与广泛发育新元古代中-晚期岩浆作用的扬子陆块北缘有差别,也不同于晚太古代-早元古代的华北陆块南缘,可能是中-新元古代形成的独立微陆块。  相似文献   

17.
A sequence of at least three Al2SiO5-bearing mineral assemblages are preserved in successively overprinted ductile shear zones in the Willimantic window, Connecticut. The ductile deformation, localized at and near the boundary between the Putnam-Nashoba terrane and underlying Avalon terrane is characterized by a network of anastomozing shear zones that outline metre-scale tectonic blocks of migmatitic Kfs + Sil + Gt + Bi + Pg + Qtz + Ilm + Ru gneiss. These assemblages record Acadian or older metamorphic conditions of 6 kbar, 700d? C. Mylonitic gneisses in shear zones that define block margins were formed by reconstitution and recrystallization of the migmatitic gneiss. The reconstituted rocks exhibit relict Ky + St + Grt (+Pl + Bt + Qtz + Rt + Ilm) assemblages and require a minimum pressure for the Ky-Str grade metamorphism of 8.5 kbar. Kyanite in block margins is widely replaced by sillimanite, and locally by andalusite, during a period of post-Alleghanian ductile deformation. The interiors of blocks do not record this sequence of polymorphs. The pattern of reconstitution is accounted for by localization of strain along block margins within a regionally extensive terrane-bounding fault zone. Strain provided the activation energy for recrystallization and retrograde mineral reactions. The P-T conditions of post-Alleghanian ductile deformation evolved from 600d? C and 6 kbar to 550d? C and 3 kbar. The occurrence of Ky + Str-bearing assemblages, overprinting Acadian Kfs + Sil-bearing assemblages and subsequently overprinted by Alleghanian sillimanite- and andalusite-bearing assemblages, along with reset hornblende 40Ar/39 Ar mineral ages from Mississippian to Permian, requires a prograde Alleghanian metamorphism of rocks previously metamorphosed during the Acadian. Thus, mineral assemblages from gneisses in the Willimantic fault zone retain evidence of a protracted tectonothermal evolution that included high-grade Acadian orogenesis, tectonic loading resulting from Alleghanian collision of Avalon with North America, and tectonic exhumation in Permo-Triassic time. The c.3-kbar pressure decrease between prograde and retrograde Alleghanian metamorphic conditions corresponds to 10 km of crust that must have been tectonically excised from the base of the Putnam-Nashoba terrane cover sequence following Alleghanian orogenesis in south-eastern New England.  相似文献   

18.
北淮阳盆岭带的构造演化与铀成矿   总被引:1,自引:0,他引:1       下载免费PDF全文
北淮阳盆岭构造带是大别造山带的重要组成部分。佛子岭岩群代表了早古生代扬子地块北缘大别古岛弧弧前海盆的火山沉积建造,在加里东运动陆块对接过程中变形变质。石炭系梅山群具磨拉石建造特征。在华力西印支期陆内俯冲褶皱带的基础上,燕山期沿桐柏桐城断裂伸展北移,近东西向断陷盆地发育,形成盆岭构造景观。南侧大别山强烈隆升,铸就了现今大别山变质核杂岩构造格局。中生代岩浆活动是区内重要铀源,具有成矿潜力的地质体是响洪甸正长岩体和北带粗面质火山碎屑岩  相似文献   

19.
秦岭造山带东段秦岭岩群的年代学和地球化学研究   总被引:6,自引:14,他引:6  
时毓  于津海  徐夕生  邱检生  陈立辉 《岩石学报》2009,25(10):2651-2670
对东秦岭地区的陕西省洛南县、宁陕县、长安县和河南省淅川县出露的四个秦岭岩群变质岩进行的岩石学和地球化学研究表明,样品主要由变质火山岩和变质沉积岩组成.详细的锆石U-Pb定年结果显示三个正变质岩均形成于新元古代早期(971~843Ma),而副变质岩中富集大量新元古代碎屑锆石,根据最年轻的谐和年龄(859Ma)和早古生代的变质年龄,推测其沉积时代为新元古代中晚期.因此,北秦岭南部的秦岭岩群的变质岩主要由新元古代早期的火成岩和新元古代中晚期的沉积岩组成.变质作用主要发生在加里东期,局部有燕山期的变质作用叠加.指示北秦岭的造山作用主要发生在早古生代.岩石地球化学研究还显示秦岭岩群的新元古代火山岩均形成于火山弧构造环境,沉积岩沉积于大陆弧-活动大陆边缘环境,指示秦岭造山带在新元古代早期是一个火山弧.秦岭岩群的火山岩和沉积岩在形成时代和构造环境方面与扬子克拉通西缘的特征非常相似,表明位于北秦岭造山带的秦岭岩群应归属于扬子克拉通陆块,是扬子北缘的一个大陆边缘弧.  相似文献   

20.
The Early Caledonian folded area in Central Asia (Early Caledonian superterrane) hosts micro-continent fragments with an Early and Late Precambrian crystalline basement, the largest of them being the Dzabkhan and Tuva-Mongolian fragments. Their junction zone hosts exposures of crystalline rocks that were previously thought to be part of the Early Precambrian Dzabkhan microcontinent. The Bayannur zone in the southern part of the Songino block hosts the Baynnur gneiss-migmatite and Kholbonur metavolcanic-terrigenous metamorphic complexes. The former is believed to be the Early Proterozoic crystalline basement, and the latter is thought to unconformably overly the Late Riphean cover complex of the Songino block. Various rocks of the tectono-stratigraphic complexes in the Bayannur zone were studied geologically and geochronologically (by the U-Pb technique of zircon). Regional metamorphism and folding in the Bayannur Complex were dated at 802 ± 6 Ma. The Nd model ages lie within the range of 1.5–2.0 Ga and thus preclude the correlation of these rocks with those in the Archean and Early Proterozoic basement of the Dzabkhan microcontinent. The upper age limit for folding and metamorphism in the Bayannur zone is marked by postkinematic granites dated at 790 ± 3 Ma, and the lower limit of the volcano-sedimentary complex is determined by the Nd model age of the sandstone (1.3 Ga). The upper age limit of the volcano-plutonic rocks in this zone is set by the gabbroids and anorthosites: 783 ± 2 and 784 ± 3 Ma, respectively. The complex of island-arc granitoids in the Bayannur zone is dated at 859 ± 3 Ma. The age constraints make it possible to correlate crystalline rocks in the Bayannur Complex of the Sangino block and the Dzhargalant Complex in the Tarbagatai block. Currently available data testify that the Precambrian Khangai group of blocks in the Early Caledonian Central Asian superterrane includes continental crustal blocks related to the processes of Early Precambrian, Late Riphean, and Vendian tectonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号