首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Gondwana Research》2010,17(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

2.
Non-volcanic deep low-frequency tremors in southwest Japan exhibit a strong temporal and spatial correlation with slow slip detected by the dense seismic network. The tremor signal is characterized by a low-frequency vibration with a predominant frequency of 0.5–5 Hz without distinct P- or S-wave onset. The tremors are located using the coherent pattern of envelopes over many stations, and are estimated to occur near the transition zone on the plate boundary on the forearc side along the strike of the descending Philippine Sea plate. The belt-like distribution of tremors consists of many clusters. In western Shikoku, the major tremor activity has a recurrence interval of approximately six months, with each episode lasting over a week. The tremor source area migrates during each episode along the strike of the subducting plate with a migration velocity of about 10 km/day. Slow slip events occur contemporaneously with this tremor activity, with a coincident estimated source area that also migrates during each episode. The coupling of tremor and slow slip in western Shikoku is very similar to the episodic tremor and slip phenomenon reported for the Cascadia margin in northwest North America. The duration and recurrence interval of these episodes varies between tremor clusters even on the same subduction zone, attributable to regional difference in the frictional properties of the plate interface.  相似文献   

3.
Recently, the occurrence of slow earthquakes such as low-frequency earthquakes and very low-frequency earthquakes have been recognized at depths of about 30 km in southwest Japan and Cascadia. These slow earthquakes occur sometimes in isolation and sometimes break into chain-reaction, producing tremor that migrates at a speed of about 5–15 km/day and suggesting a strong interaction among nearby small asperities. In this study, we formulate a 3-D subduction plate boundary model with two types of small asperities chained along the trench at the depth of 30 km. Our simulation succeeds in representing various types of slow earthquakes including low-frequency earthquakes and rapid slip velocity in the same asperity, and indicates that interaction between asperities may cause the very low-frequency earthquakes. Our simulation also shows chain reaction along trench with propagation speed that can be made consistent with observations by adjusting model parameters, which suggests that the interactions also explain the observed migration of slow earthquakes.  相似文献   

4.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

5.
《Gondwana Research》2010,17(3-4):370-400
A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation.  相似文献   

6.
受环太平洋地震带影响,华北平原地区地震频发,尤其是处于中国首都经济圈的京津冀地区的地震事件备受关注。通过对历史文献资料及地震台网记录中的地震事件统计、分析,重建该地区地震事件历史并获取其潜在的空间分布特征及时间规律,对未来地震事件的早期预警具有重要参考意义。分析结果表明,公元前231年至公元2018年期间京津冀地区发生的1044起地震事件中,以有感地震和中强地震为主,小地震、强烈地震以及大地震发生频次较低。地震记录完整性分析结果表明,除小地震外,其他等级地震记录自公元1400年以来基本完整。在空间分布上,京津冀地区历史地震呈“T”字形分布,沿1条北西—南东走向地震带和1条北东—南西走向地震带分布。在时间上,京津冀地区地震事件呈现出阶段性的变化,在公元1480—1680年间以及1950年以来2个时间段内较为活跃,发生频率较高,频谱分析结果进一步表明地震记录存在45年的复发周期。在月际尺度上,地震事件同样存在季节性差异且多发于夏秋季节,同时地震密集区域在年内呈现出自西向东迁移的现象。最后,根据历史地震事件发生的时间规律,在未来一段时间内京津冀地区仍将处于地震活跃期,存在发生强震的风险。  相似文献   

7.
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   

8.
Inversion of tsunami waveforms is a well-established technique for estimating the slip distributions of subduction zone earthquakes, with some of the most detailed results having been obtained for earthquakes in the Nankai Trough, SW Japan. The present study, although it uses a method and tsunami waveform data set almost identical to previous study, aims to improve on previous work by using a more precise specification of initial conditions for the calculation of tsunami Green's functions. Specifically, we incorporated four improvements in the present study: (1) we used a realistic plate model based only on seismic survey results, and assumed it to be the fault plane of the 1944 Tonankai earthquake; (2) the smallest subfaults consistent with the long wavelength approximation were used in the tsunami inversion analysis; (3) we included the effect of horizontal displacement of the ocean bottom on tsunami generation; and (4) we performed a checkerboard resolution test. As obtained in previous studies, a zone of high slip (> 2.0 m) was resolved off the Shima Peninsula. However, the more precise calculation of tsunami Green's functions has revealed additional detail that was not evident in previous studies, which we demonstrate is resolvable and correlates with the position of known faults in the accretionary prism. While there was little or no slip near the trench axis in the eastern part of the rupture zone, there was up to 1.5 m of slip resolved within 30 km of the trough axis in the western part, along the coast of the Kii Peninsula. This troughward slip zone coincides with the position of a large splay fault mapped in multichannel reflection surveys. Furthermore, it is also clear that the upper edge of the Enshu fault off Shima and Atsumi peninsulas is consistent with the up-dip limit of slip in the eastern part of our model. We tested the possibility that slip occurred on the former splay fault instead of on the plate interface during the 1944 Tonankai earthquake, and find that slip on this splay fault is also consistent with the data, although we cannot distinguish whether slip was dominant on the splay fault or on the plate interface. We further suggest that the position of the Enshu fault may be determined by the subduction of topographic highs, and that such faults may have an important influence on the up-dip rupture limit of the 1944 Tonankai and, potentially, other subduction zone earthquakes.  相似文献   

9.
We detect repeating earthquakes associated with the Philippine Sea plate subduction to reveal the plate configuration. In the Kanto district, we find 140 repeating earthquake groups with 428 events by waveform similarity analysis. Most repeating earthquakes in the eastern part of the Kanto district occur with a regular time interval. They have thrust-type focal mechanisms and are distributed near the upper surface of the Philippine Sea plate. These observations indicate that the repeating earthquakes there occur as a repetition of ruptures on the isolated patches distributed on the plate boundary owing to the concentration of stress caused by aseismic slips in the surrounding areas. This shows that the distributions of repeating earthquakes suggest the aseismic slips in the surrounding areas of small patches. We determine spatial distributions of repeating earthquakes in the eastern part of the Kanto district and find that they correspond to the upper boundary of the Philippine Sea plate, that is, the upper boundary of the oceanic crust layer of the Philippine Sea plate. The plate geometry around Choshi is newly constrained by repeating earthquake data and a rather flat geometry in the eastern part of the Kanto district is revealed. The obtained geometry suggests uplift of the Philippine Sea plate due to the collision with the Pacific plate beneath Choshi.Repeating earthquakes in the western part of the Kanto district have extremely shorter recurrence times, and their focal mechanisms are not of the thrust types. These repeating earthquakes are classified as “burst type” activity and likely to occur on the preexistent fault planes which are distributed around the “collision zone” between the Philippine Sea plate and the inland plate. The variation among the repeating earthquake activities in the Kanto district indicates that regular repetition of repeating earthquakes is possible only on the plate boundary with a smooth and simple geometry.  相似文献   

10.
This work focuses on the use of electromagnetic emissions (EM) in the HF band as a warning event for earthquakes. EM at HF components 41 MHz and 46 MHz were monitored and recorded from eight field stations in Greece and correlated with seismological events. Directivity effect raised since EM emissions at specific station locations were correlated to earthquake events from prescribed regions. EM recordings during 1999 were used and by visual inspection were associated to most of the earthquake events greater than 5R. Using these observations a novel algorithm based on the ratio of short term to long term signal average, together with a prediction rules set derived from 1999's EM emissions study were developed to combine results from several field stations. Performance of the system was promising, but was dependent on the geographic area of interest. Overall performance for earthquakes events of magnitude greater than 5.7 R was 75% of seismic events were correctly predicted by EM activity, while 25% were not predicted.  相似文献   

11.
Spatial and temporal analysis of global seismological data 1964–2005 reveals a distinct teleseismic earthquake activity producing a columnar-like formation in the continental wedge between the Krakatau volcano at the surface and the subducting slab of the Indo-Australian plate. These earthquakes occur continuously in time, are in the body-wave (m b) magnitude range 4.5–5.3 and in the depth range 1–100 km. The Krakatau earthquake cluster is vertical and elongated in the azimuth N30°E, suggesting existence of a deep-rooted fault zone cutting the Sunda Strait in the SSW-NNE direction. Possible continuation of the fault zone in the SW direction was activated by an intensive 2002/2003 aftershock sequence, elongated in the azimuth of N55°E. Beneath the Krakatau earthquake cluster, an aseismic gap exists in the Wadati-Benioff zone of the subducting plate at the depths 100–120 km. We interpret this aseismic gap as a consequence of partial melting inhibiting stress concentration necessary to generate stronger earthquakes, whereas the numerous earthquakes observed in the overlying lithospheric wedge beneath the volcano probably reflect magma ascent in the recent plumbing system of the Krakatau volcano. Focal depth of the deepest events (~100 km) of the Krakatau cluster constrains the location of the primary magma generation to greater depths. The ascending magmatic fluids stress fault segments within the Sunda Strait fault zone and change their friction parameters inducing the observed tectonic earthquakes beneath Krakatau.  相似文献   

12.
During May 2003 a swarm of 16 earthquakes (ML = 0.6–2.1) occurred at Anjalankoski, south-eastern Finland. The activity lasted for three weeks, but additional two events were observed at the same location in October 2004. A comparison of the waveforms indicated that the source mechanisms and the hypocentres of the events were nearly identical.A relative earthquake location method was applied to better define the geometry of the cluster and to identify the fault plane associated with the earthquakes. The relocated earthquakes aligned along an ENE–WSW trending zone, with a lateral extent of about 1.0 km by 0.8 km. The relative location and the waveform-modelling of depth sensitive surface wave (Rg) and S-to-P converted body wave (sP) phases indicated that the events were unusually shallow, most likely occurring within the first 2 km of the surface. The revised historical earthquake data confirm that shallow swarm-type seismicity is characteristic to the area.The focal mechanism obtained as a composite solution of the five strongest events corresponds to dip-slip motion along a nearly vertical fault plane (strike = 250°, dip = 80°, rake = 90°). The dip and strike of this nodal plane as well as the relocated hypocentres coincide with an internal intrusion boundary of the Vyborg rapakivi batholith.The events occur under a compressive local stress field, which is explained by large gravitational potential energy differences and ridge-push forces. Pore-pressure changes caused by intrusion of ground water and/or radon gas into the fracture zones are suggested to govern the swarm-type earthquake activity.  相似文献   

13.
阿尔金断裂带东段地区的地质构造特征及其动力学机制一直是地学工作者关注的焦点。近年来小震资料越来越多应用到活动断裂空间展布、深浅构造分析及动力学机制研究领域。本文应用双差定位法获得研究区域2008~2017年间6013次地震事件的精确定位数据,通过多条小震深度剖面清晰刻画出断裂系统的空间展布形态。综合石油地震剖面、人工地震宽角反射/折射剖面、人工地震深反射剖面,充分利用小震精确定位信息以及浅表活动构造研究成果,建立研究区断裂系统的深浅部构造模型。研究区莫霍面由北往南逐渐加深,存在三处断错,呈阶梯状展布,地壳内存在一条厚约10km的低速层,在该层以上为地震多发区,断裂系统总体呈"Y"字型,上部为一系列叠瓦状逆冲断裂,造成祁连山的隆升,向下并入一条主干断层。最后探讨了青藏高原东北缘地区构造运动的动力学机制,亚洲板块俯冲至祁连山前,上地壳以逆冲推覆构造模式造成上地壳增厚现象,而中下地壳主要为亚洲岩石圈地幔下插,上地幔的拖曳作用下发生流动引起地壳增厚,上下地壳整体增厚。  相似文献   

14.
地震震源分布强烈依赖于构造环境的温度和压力条件。震源机制可使大陆地壳脆性-韧性转换带(下部稳定性过渡边界)的温压条件复杂化。该过渡边界伴随速度弱化作用(有震活动)向速度强化作用(无震活动)的转化。在岩石圈流变和壳幔动力学的基础上研究了与板块边界有关的地震活动,包括板缘地震和俯冲板片地震。俯冲带板缘地震的深度分布受约于脆性摩擦动力机制,而摩擦剪切机制不能满意地解释深震活动,包括俯冲板片地震。这是因为深震震源机制可能与高压、高温条件下的固一固相变有关,而用脆性破裂或摩擦作用来解释就不近合理。以理论与实验研究为依据,本文对与震源物理和震源分布有关的岩石圈流变特性进行了较为深入的论述。  相似文献   

15.
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response. By studying these factors, the geomorphic and geological factors controlling the nature, condition, and distribution of earthquake-induced geohazards can be analyzed. Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine...  相似文献   

16.
To clarify the generating mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and the induced tsunami, we determined high-resolution tomographic images of the Northeast Japan forearc. Significant lateral variations of seismic velocity are visible in the megathrust zone, and most large interplate thrust earthquakes are found to occur in high-velocity (high-V) areas. These high-V zones may represent high-strength asperities at the plate interface where the subducting Pacific plate and the overriding Okhotsk plate are coupled strongly. A shallow high-V zone with large coseismic slip near the Japan Trench may account for the mainshock asperity of the 2011 Tohoku-oki earthquake. Because it is an isolated asperity surrounded by low-velocity patches, most stress on it was released in a short time and the plate interface became decoupled after the Mw 9.0 earthquake. Thus the overriding Okhotsk plate there was shot out toward the Japan Trench and caused the huge tsunami.  相似文献   

17.
The Great Lisbon earthquake has the largest documented felt area of any shallow earthquake and an estimated magnitude of 8.5–9.0. The associated tsunami ravaged the coast of SW Portugal and the Gulf of Cadiz, with run-up heights reported to have reached 5–15 m. While several source regions offshore SW Portugal have been proposed (e.g.— Gorringe Bank, Marquis de Pombal fault), no single source appears to be able to account for the great seismic moment as well as all the historical tsunami amplitude and travel time observations. A shallow east dipping fault plane beneath the Gulf of Cadiz associated with active subduction beneath Gibraltar, represents a candidate source for the Lisbon earthquake of 1755.Here we consider the fault parameters implied by this hypothesis, with respect to total slip, seismic moment, and recurrence interval to test the viability of this source. The geometry of the seismogenic zone is obtained from deep crustal studies and can be represented by an east dipping fault plane with mean dimensions of 180 km (N–S) × 210 km (E–W). For 10 m of co-seismic slip an Mw 8.64 event results and for 20 m of slip an Mw 8.8 earthquake is generated. Thus, for convergence rates of about 1 cm/yr, an event of this magnitude could occur every 1000–2000 years. Available kinematic and sedimentological data are in general agreement with such a recurrence interval. Tsunami wave form modeling indicates a subduction source in the Gulf of Cadiz can partly satisfy the historical observations with respect to wave amplitudes and arrival times, though discrepancies remain for some stations. A macroseismic analysis is performed using site effect functions calculated from isoseismals observed during instrumentally recorded strong earthquakes in the region (M7.9 1969 and M6.8 1964). The resulting synthetic isoseismals for the 1755 event suggest a subduction source, possibly in combination with an additional source at the NW corner of the Gulf of Cadiz can satisfactorily explain the historically observed seismic intensities. Further studies are needed to sample the turbidites in the adjacent abyssal plains to better document the source region and more precisely calibrate the chronology of great earthquakes in this region.  相似文献   

18.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

19.
On December 26, 2004 the world's fourth largest earthquake since 1900 and the largest since the 1964 Prince William Sound, Alaska earthquake, occurred off the west coast of northern Sumatra with a magnitude of 9.3. On March 28, 2005 another event of magnitude 8.7 took place in the same region. The December 26, 2004 earthquake has prompted scientists to investigate possible electromagnetic signatures of this event, using ground magnetic observations. Iyemori et al. [Iyemori, T. et al., 2005. Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004. Geophys. Res. Lett., 32, L20807, doi:10.1029/2005GL024083.] have suggested that a 3.6 min long geomagnetic pulsation, observed shortly after this event, was generated by the earthquake. They have speculated that a 30 s magnetic pulsation was also caused by the earthquake. Here for the first time, CHAMP satellite magnetic and electron density data are examined to find out if electromagnetic signatures which are possibly related to these recent megathrust earthquakes are observed in satellite magnetic data. We have shown that some specific features are observed after the two earthquakes, with periods of about 16 and 30 s. Our results favor an external source origin for the 30 s pulsation. Moreover, after more than 1 h, CHAMP magnetic data indicate the existence of a feature characterized by the same parameters (duration, amplitude, and frequency content), which could be associated with each earthquake, respectively. Further investigations are required in order to answer the question of whether these signals can be associated with earthquakes and to assign their possible usefulness with respect to earthquake development.  相似文献   

20.
Statistics of the recurrence times of great earthquakes at the Pacific subduction margins are made. The mean return period of great earthquakes is different from zone to zone, ranging from 27 to 117 years. The standard deviation of the return period proves to be very small, several years say, in some cases. The probabilities of a great earthquake recurring in each zone are estimated on the basis of Weibull distribution analysis.The mean return periods thus estimated are combined with the relative plate velocities at respective zones as obtained in the plate tectonics in order to estimate the ultimate displacement to rupture at the interface of the continental plate and the downgoing oceanic plate. It is presumed that great earthquakes at subduction zones occur as a result of a rebound of the continental plate at the time of rupture. The ultimate displacement thus estimated ranges from 2 to 8 m, and seems somewhat larger than that estimated on the basis of seismic observations, although the value of ultimate displacement seems to harmonize roughly with estimates based on geodetic observations on land. However, the ultimate displacement at the Aleutian—Alaska zone as estimated here seems much smaller than that estimated from actual observations.The ultimate strains, which are deduced from the displacements obtained on the assumption that the logarithmic extent of the deformed area is proportional to earthquake magnitude, are then calculated, and compared with those estimated for large inland earthquakes as revealed by repetition of geodetic surveys. The mean ultimate strain is estimated as 4.3 · 10−5 for subduction-zone earthquakes while that for inland earthquakes has been estimated as 4.7 · 10−5. As the agreement between both the ultimate strains is fairly good, it is tentatively concluded that the strength of the plate interface under the sea bottom is more or less the same as that in the crust on land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号