首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a close relationship between interannual variability of the Indian summer monsoon rainfall and the El Niño/Southern Oscillation (ENSO) (drought conditions over India accompany warm ENSO events and vice versa). However, recent observations suggest a weakening of this ENSO-monsoon relationship that may be linked to global warming. We report here an analysis of the ENSO-monsoon relationship within the framework of a 1000-year control simulation of the MRI-coupled general circulation model (GCM), MRI-CGCM2.2. An overall correlation between the June-July-August (JJA) Nino3.4 sea surface temperature and the JJA Indian monsoon rainfall is –0.39, with reasonable circulation characteristics associated with the modeled ENSO. The simulated ENSO-monsoon relationship reveals long-term variations, from –0.71 to +0.07, in moving 31-year windows. This modulation in the ENSO-monsoon relationship is associated with decadal variability of the climate system.  相似文献   

2.
Since tropical rainfall is important in the global energy and hydrologic cycle, the tropical rainfall changes under global warming have attracted extensive attention around the world in recent decades. The advances in the observational studies and model projection for the tropical rainfall changes under global warming were reviewed here. The frontiers in the mechanism of regional tropical rainfall changes and the approaches of rainfall change research are summarized. The large intermodel spread in the multi-model projections, the sources of uncertainty and the methods to reduce the uncertainty were also introduced. Finally, the challenges about the tropical rainfall changes were discussed.  相似文献   

3.
南亚季风降水的双极振荡*   总被引:1,自引:2,他引:1  
文章利用气象资料揭示在印度半岛南部和北部,南亚季风降水变化在10年尺度以上呈翘翘板变化形式;利用更长的季风降水资料,即300年的喜马拉雅山达索普冰芯降水记录和印度半岛南部石笋降水记录,发现印度南部和喜马拉雅山季风降水呈双极振荡行为。自1700年以来,喜马拉雅山,即印度北部(或印度半岛南部)季风降水经历了1700~1764年期间的减小(或增加)趋势,1764~1876年期间的增大(或减小)趋势,1876~2000年期间的减小(或增加)趋势。同时,发现印度半岛南部的季风降水同北半球温度变化具有相同的变化特征,而喜马拉雅山季风降水同北半球温度变化具有相反的变化特征。南亚季风降水的这种南北翘翘板变化形式,与跨赤道气流有密切的联系。  相似文献   

4.
We present evidence from the analysis of gridded annual rainfall data that, increased variability and declining rainfall totals are the main cause of declining lake levels in the Volta basin above the Akosombo Dam. West Africa has undergone a period of diminished rainfall, punctuated by a series of severe droughts and marked by a shift in rainfall regime. As a result, lake levels behind the hydro-electric impoundment have fluctuated so widely at times that, power has had to be rationed. The trends in the spatial and temporal variability of annual rainfall in the riparian nations explain the low impoundment levels frequent in recent decades. The drying of Burkina Faso and Mali is particularly marked and synchronous to an apparent shift in the rainfall regime in Ghana towards a longer dry season and vanishing short dry spell, the effects which tend to negate each other. The various regional and temporal associations between El Niño-Southern Oscillation phenomenon (ENSO) are investigated as a possible cause of variation across the basin. The strengths of these associations and low frequency shifts suggest an unfortunate correspondence between national and climatological boundaries which may serve to heighten regional political tensions resulting from ENSO effects. Lack of re-investment in the Akosombo Dam as a result of management policies, political and pre-construction contractual agreements have all conspired in recent decades to make these hydro-climatological changes more devastating.  相似文献   

5.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   

6.
Climate impacts of environmental degradation in Sudan   总被引:1,自引:0,他引:1  
There exists an impressive amount of work for Sudan showing the anthropogenic degradation of natural vegetation cover. However, there are few examples of consequent climatic changes in literature. This work, thus, seeks to assess such effects of environmental forcing on various climatic patterns over the past few decades. Within the frame of the present analysis, the results are quite striking and are in concordance with scientific contentions that such land degradation could result in climatic modification. Higher temperature and less rainfall, sunshine duration and global radiation have been noticed. Evapotranspiration has responded more to the warming and drying conditions, thus showed signs of increasing rates, especially during the wet season. However, the extent of increase seems to have been suppressed by the decrease in sunshine duration and solar radiation as well as the inconsistent behaviour of wind speed. Changes in the variability of the within-year monthly observations have also occurred, thus suggesting an increase in the occurrence of extremes. The observed climatic modification in the country has exaggerated the insidious drought conditions. The present findings are hoped to contribute to our understanding of the effects of environmental problem and assist in considering policy responses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
This paper presents results of a study of long term trends in the characteristics of the within-season temporal profile of southwest monsoon rainfall over western India during the last five decades in relation to global warming induced regional climate change. In contrast to recent climate change analyses and projections, no significant long-term trends have been observed in this study. Slow decadal scale variations observed are analysed in relation to Pacific Decadal Oscillations (PDO). Daily variations in rainfall anomaly show opposite characteristics during negative and positive phases of PDO. The above-normal rainfall (>25%) is found during the starting phase of monsoon in negative PDO. Over the last decade, i.e., during 2000–2007, the seasonal rainfall amount, as well as seasonal span of southwest monsoon over western India is indicative of a gradual increase.  相似文献   

8.
An analysis of the mean monthly data of 124 years reveals that the relationship between the Southern Oscillation Index in September and the winter monsoon rainfall (WMR) over Coastal Andhra Pradesh (CAP) is variable and non-stationary. In the recent four decades, however, SOI (Sept) is negatively and significantly correlated with CAP WMR. A similar analysis is performed using 50 years of mean monthly SSTs over Nino-3.4 region in August and September and CAP WMR to detect a possible relationship and there is a striking positive relation between them. In both of the above cases, the September signal is more significant in the recent four decades than for the other months and seasons for probable prediction of CAP WMR. Finally, to examine the influence of SO on the winter monsoon rainfall, a non-parametric test “Mann-Whitney Rank Statistics” test has been applied to the rainfall associated with extreme positive and negative SOI events  相似文献   

9.
Research on the Global Warming Hiatus   总被引:1,自引:0,他引:1  
A global warming “hiatus” has been observed since the beginning of the 21st century despite the increase in heat-trapping greenhouse gases, challenging the current global warming studies. Focusing on the phenomena and mechanisms of the global warming “hiatus”, the National Key Research Program of China launched a project in July, 2016. The main research themes of this project cover: ①Revealing the spatial and temporal variability of the global warming hiatus, and quantifying the contributions of external forcing and internal (natural) variability, respectively; ②Revealing the role of the atmosphere in the global heat and energy redistribution under global warming hiatus; ③Revealing the role of the ocean in the global heat and energy redistribution under global warming hiatus; ④Investigating the predictability of the global warming hiatus. The key scientific issues to be resolved include: ①Identifying characteristics of the global warming hiatus and discerning the roles of decadal, multi-decadal oscillations; ②Revealing the role of ocean-atmosphere dynamical processes in the global redistribution of heat and energy; ③Understanding the predictability of the global warming hiatus. The research aims to predict the future development of the global warming hiatus, and to point out the possible impacts on China and other important areas, including “The Belt and Road” core area and the Polar Regions.  相似文献   

10.
In the recent decades, a large amount of anthropogenic heat has been absorbed and stored in the Southern Ocean. Results from observations and climate models' simulations both show that the Southern Ocean displays large warming in the upper and subsurface ocean that maximizes at 45°~40°S. However, the underlying mechanisms and evolution processes of the Southern Ocean temperature changes remain unclear, leaving the Southern Ocean to be a hotspot of climate change studies in the recent years. The present study summarized the current progress in the observations and numerical modeling of long-term temperature changes in the Southern Ocean. The effects of changes in wind, surface heat flux, sea-ice and other factors on the ocean temperature changes were presented, along with the introduction to the role of oceanic mean circulation and eddies. The present study further proposed that a deepening of the understanding in the Southern Ocean temperature change may be achieved by investigating the fast and slow responses of the Southern Ocean to external radiative forcing, which are respectively associated with the fast adjustments of the ocean mixed-layer and the slow evolution of the deep ocean. Specifically, the striking and fast mixed-layer ocean warming north of 50°S is tightly related to the surface heat absorption over upwelling regions and wind-driven meridional heat transport, resulting in enhanced warming around 45°S. While in the slow response of the Southern Ocean temperature, the enhanced ocean warming shifts southward and downward, mainly associating with the heat transfer from oceanic eddies. The Southern Ocean temperature has pronounced climatic effects on many aspects, such as global energy balance, sea-level rise, ocean stratification changes, regional surface warming and atmospheric circulation changes. However, large model biases/deficiencies in simulating the present-day climatology and essential ocean dynamic processes last in generations of climate models, which are the main challenge in advancing our understanding in the mechanisms for the Southern Ocean climate changes. Therefore, to achieve reliable future projections of the Southern Ocean climate, substantial efforts will be needed to improve the model performances and physical understanding in the relative role of various processes in ocean temperature changes at different time scales.  相似文献   

11.
Rainfall variability over a river basin has greater impact on the water resource in that basin. With this in view, the variability of the monsoon rainfall over the Godavari river basin has been studied on different time scales. As expected, the monsoon rainfall in Godavari basin is more variable (17%) than the all-India monsoon rainfall (11%) during the period of study (1951–90). Similarly, inter-annual variability of the monsoon rainfall on smaller time scales is found to be still higher and increases while going on from seasonal to daily scales. An interesting observation is that the intra-seasonal variability of the monsoon rainfall has a significant negative relationship (CC= −0.53) with the total seasonal rainfall in the basin.  相似文献   

12.
http://www.sciencedirect.com/science/article/pii/S167498711400036X   总被引:1,自引:1,他引:0  
Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment.Although there are enough historical evidence to support the theory that climate change is a natural phenomenon,many research scientists are widely in agreement that the increase in temperature in the 20 th century is anthropologically related.The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally.In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness.This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia.The comparison of decadal variation of precipitation and temperature anomalies before the 1970 s found general increases which were mostly varying.But beyond the 1970 s,global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period.There are frequent changes and a shift westward of the Indian summer monsoon.Although precipitation is observed to be 70%below normal levels,in some areas the topography affects the intensity of rainfall.These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future.The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human,financial,infrastructure and food security of the region.  相似文献   

13.
Generally average rainfall over meteorological subdivisions is used for assessment of the variability of monsoon rainfall. It is shown here that variations of seasonal rainfall over the meteorological subdivisions of interior Karnataka are not coherent. A methodology for delineating coherent rainfall zones is developed in this paper and applied to derive such zones for the State of Karnataka.  相似文献   

14.
The long-term variability of rainfall in the Soummam watershed (NE Algeria) has been analysed over the past 108 years using continuous wavelet method in order to identify the interannual modes controlling the rainfall variability. Statistical analyses of rainfall timeseries have shown its distribution following five periods of time, limited by a series of discontinuities around 1935, 1950, 1970 and 1990. The continuous wavelet transform have demonstrated different low frequency modes: 2–4, 4–8, 8–16 and 16–32 years.The annual band is expanded during the full study period with some pics around 1905, 1920–1935 and 1960; it shows a negative long-term trend, in particular since the period 1970–1990 when a major change has been identified. Then, the relationships between climate patterns of North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI) and the hydrological variability in the frequency domain have been investigated; they have shown a mean explained variance of 40 and 24 %, respectively. Such variances are less obvious for the annual mode and increase for the interannual frequencies. The coherence suffer from high perturbations since the period 1970–1990 when the NAO (SOI) shifts from negative (positive) phases to positive (negative) ones. Such anomalies are responsible for significant changes of rainfall variability, emphasising the global warming effects.  相似文献   

15.
中国大陆现代降水表现出若干长期变化特征,对现代降水趋势性变化的原因,目前还没有很好了解。结合多种资料分析以及前人研究成果,对中国大陆近几十年降水变化趋势的原因进行了探讨,得到以下初步认识:① 现代降水量变化趋势具有明显的地域性差异,全国平均没有表现出显著增加或减少的长期变化,但强降水事件频率和降水量出现明显增多,而小雨事件特别是痕量降水事件显著减少。② 再分析资料表明,最近几十年全国水汽净收支量在一定程度上增加了,实际观测资料显示近地面和对流层中下层空气比湿或大气可降水量出现较明显上升趋势。③ 代用资料序列分析显示,全国大部地区近几十年降水变化仍处于晚近历史时期正常自然波动范围内;近百年观测的降水量序列也表明,黄淮海地区降水具有多重时间尺度相互叠加作用特点,低频自然气候变异的影响信号有清晰表现。④ 人类活动引起的大气中温室气体浓度增加对全国或东部季风区现代降水变化影响的信号,目前仍难以识别;区域性近地面风速减弱导致的雨量观测系统偏差以及大范围气溶胶浓度增加,可能是东部季风区大多数台站观测到的强降水事件频率增加和小雨频率显著减少的两个重要原因。⑤ 主要与城市化影响相关的地面观测资料系统偏差,可以部分解释现有分析表明的短历时强降水事件频率和累计降水量增加现象,同时也很可能是城市台站小雨和痕量降水事件频率明显下降的另一重要原因。  相似文献   

16.
Some statistical properties of the summer monsoon seasonal rainfall for India during the last 100 years (1881–1980) are presented. The most recent decade of 1971–1980 shows the lowest value of standard-decadal average monsoon rainfall (86.40 cm) and is also characterised by the second highest value of coefficient of variation in monsoon rainfall (12.4 %). The combined last two standard-decadal period of 1961–1980 was the period of the largest coefficient of variation and the lowest average monsoon rainfall for India. The possible influence of global climatic variability on the performance of the monsoon is also examined. Analyses of correlation coefficient show that a statistically significant positive relationship with a time-lag of about six months exists between monsoon rainfall and northern hemispheric surface air temperature. A cooler northern hemisphere during January/February leads to a poor monsoon. All the major drought years during the last 3 decades had much cooler January/February periods over the northern hemisphere—1972 having the coldest January/February with a temperature departure of −0.94°C and the most disastrous monsoon failure.  相似文献   

17.
Updated rainfall data to 2006 confirm that the Sahelian rainfall has increased since the end of the 1990s, but the annual average rainfall is still as low as during the drought of the 1970s. The decrease of rainfall is higher in the Northwest and lower in the Southeast Sahel. The increase of temperature over West Africa during the end of the 20th century induced an increase of Potential Evaporation, which might reduce the runoff. However, the joint effect of climate change and of human activities on land cover over more than three decades is responsible for an increase of the runoff coefficients of the West African Sahelian Rivers since the 1970s, despite the rainfall shortage during the same period, as revealed by the analysis of runoff from Mauritania, Burkina-Faso and Niger. The runoff coefficients have increased in regions with less than 750 mm of annual rainfall, under Sahelian and subdesertic climates, leading to increased flood peaks, occurring earlier in the season. Even if it is difficult to separate which part of this runoff coefficient increase is due to climate change alone or to human impact on land cover, the highest values are observed in the most inhabited areas, where land cover is dominated by cultivated areas. This climatic/human impact on land cover is so huge that it has changed since decades the hydrological regimes of the Sahelian Rivers, from the small watershed to the largest one, such as the Niger River at Niamey.  相似文献   

18.
In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.  相似文献   

19.
Spatial variability of aridity over northern India (north of 20°N) is studied by examining variations in the arid area. Area with an objectively determined summer monsoon rainfall (June to September total) of less than 500 mm is identified as arid area. The summer monsoon rainfall of 212 rain-gauges from 212 districts of the region for the period 1871–1984 are used in the analysis. An interesting feature of the arid area series is that it shows decreasing trend from beginning of the present century. The summer monsoon rainfall fluctuations over five subjectively divided zones over northern India are examined to understand the association between rainfall and the arid area variations. The rainfall series for northwest India shows a significant increasing trend and that for northeast India a significant decreasing trend from the beginning of this century. Rainfall fluctuations over the remaining zones can be considered intermediate stages of a systematic spatial change in the rainfall pattern. This suggested that the recent decreasing trend in the arid area is due to a westward shift in the monsoon rainfall activities. From correlation analyses it is inferred that perhaps the recent decreasing trend in the arid area and increasing trend in the monsoon rainfall over northwest India are associated with a warming trend of the northern hemisphere.  相似文献   

20.
Latitudinal movements of the Intertropical Convergence Zone (ITCZ), analogous to its present-day seasonal shifts, and El Niño Southern Oscillation (ENSO)-type variability both potentially impacted rainfall changes at the millennial timescale during the last glacial period. In this study we compare tropical Pacific sedimentary records of paleoprecipitation to decipher which climate mechanism was responsible for the past rainfall changes. We find that latitudinal movements of the ITCZ are consistent with the observed rainfall patterns, challenging the ENSO hypothesis for explaining the rapid rainfall changes at low latitudes. The ITCZ-related mechanism appears to reflect large-scale atmospheric rearrangements over the tropical belt, with a pronounced Heinrich-Dansgaard/Oeschger signature. This observation is coherent with the simulated tropical rainfall anomalies induced by a weakening of the Atlantic thermohaline circulation in modeling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号