首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and thermochemistry of the xanthate adsorption reaction on pyrite and marcasite were evaluated with respect to the existing theory. The rate of xanthate adsorption was studied in a stirred reactor and the xanthate concentration was determined by UV spectrophotometry as a function of time. The heat of the adsorption reaction was measured with a microcalorimeter. The results from both experiments indicate that xanthate adsorption by pyrite or marcasite involves the formation of dixanthogen by an electrochemical reaction at the solid surface which supports the conclusions of other investigators:
12O2 (aq) = 12O2 (ad) 2X + 2H+ + 12O2→ X2 (ad) + H2O
The rate of the adsorption reaction was found to be approximately one-half order with respect to the xanthate concentration and to have an activation energy of 7.5 kcal/mole. Additionally, the rate was found to have a slight dependence on pH under certain conditions. In view of these results, it appears that the adsorption reaction is controlled by electrochemical discharge at the pyrite surface. Analysis of the data in terms of an electrochemical kinetic model successfully explained the observed rate phenomena.The measured heat of the adsorption reaction at low pH was found to be between ?63 and ?56 kcal/mole of adsorbed dixanthogen and independent of surface coverage. These experimental heats of adsorption agree with the value of ?57 kcal/mole of dixanthogen calculated for the oxidation of xanthate by oxygen from thermodynamic data reported in the literature.  相似文献   

2.
Water samples collected from a slope station and two deep stations in the western basin of the Black Sea were analyzed for stenols and stanols by glass capillary gas chromatography. These results were used in conjuction with hydrographic, particulate organic carbon, and chlorophyll a data to better understand sterol sources and their transport and transformation mechanisms in anoxic basins.The total free sterol concentrations found in the surface waters were 450–500 ng/l dropping rapidly to values well below 100 ng/l at depths below the O2H2S interface. In the upper 200 m of the water column a strong association of sterols with particulate matter is suggested. Structural elucidation by a gas chromatograph-mass spectrometer-computer system revealed the presence of at least sixteen different stenols and stanols in the surface waters of the Black Sea. Cholesterol, 24-methylenecholesterol and 24-methylcholesta-5,22-dien-3β-ol were the major sterols in the surface waters. Cholesterol and 24-ethylcholesterol both exhibited a subsurface maximum at the O2H2S interface. In the anoxic deep waters (200–2000 m) only cholesterol and 24-ethylcholesterol were found. Two stenols were found that have not been reported in seawater: a C26 stenol with a saturated C7H15 side chain (presumably 24-norcholesterol) and 24-ketocholesterol. At least six 5α-stanols could be identified in the surface samples, each of them comprising about 10–20% of the concentration of the corresponding Δ5-stenol. From these comparatively high surface values the stanol concentrations drop rapidly to values near zero at the O2H2S interface. Except for very low concentrations of 5α-cholestanol (< 4ng/l) no other stanols could be detected in the anoxic zone.From this data it appears that no detectable stenol → stanol conversion is occurring at the O2H2S interface or in the deep anoxic waters of the Black Sea.  相似文献   

3.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

4.
Compositional differences between granulite facies rocks and equivalent amphibolite facies rocks and the observation of CO2-rich fluid inclusions in granulites, have led to the suggestion that CO2 must play a role in modifying the composition of deep continental crust. How CO2 effects this change has remained unclear. Using the thermodynamic properties of aqueous ions in a fluid of evolving CO2H2O ratio, it is possible to model the incongruent dissolution of feldspars under conditions appropriate for granulite facies metamorphism. The results demonstrate that dissolution will be strongly enhanced at high CO2H2O ratios, with ion solubilities being Na+ >K+ ? Ca++. This enhancement is compatible with the reported compositional contrasts between granulite and amphibolite facies rock, but requires large fluid volumes.To test the dissolution model, a detailed field and petrologic study was conducted in a well exposed granulite facies terrane in West Greenland. Strong correlation between fluid composition and bulk rock chemistry can be documented; CO2-rich regions contain rocks which consistently have low aNa2OaCaO ratios, while H2O-rich regions consistently have high aNa2OaCaO ratios. Magnetite rims on sulfide grains are ubiquitous in high ?Co2 regions and are absent in high ?H2O regions, and they provide evidence that CO2 was introduced into the region. These correlations and observations are predictable from the properties of the dissolution process. These considerations, along with observations regarding graphite petrogenesis, provide strong arguments that the total fluid volume interacting with the rock during metamorphism was very large, in some cases equaling or exceeding total rock volume. Such large fluid volumes can lead to significant compositional modification of the crust, and will mask the original protolith chemistry. Such processes should lead to Ca- and Al-enriched, Na-, K-, S- and Si-depleted residues in the deep crust.  相似文献   

5.
6.
A new technique for the determination of intrinsic oxygen fugacities (?O2's) of single and polyphase geological samples with solid ZrO2, oxygen-specific electrolytes is described. Essentially the procedure involves isolating the emf signal from the sample from that unavoidably imposed by the residual atmosphere inside the sample-bearing sensor. By varying the ?O2 of the residual atmosphere, it is possible to determine a ‘plateau’ value of constant ?O2 recorded from the sensor which represents a reversed intrinsic ?O2 measurement for the sample alone, and where the extent of the plateau reflects the innate buffering capability of the sample. A measure of the precision and accuracy of the data obtained is the fact that identical ?O2 values are obtained whether on a heating or cooling cycle of the sample + compatible atmosphere system.These techniques have been applied to measurements of the intrinsic ?O2 of spinels from peridotites and megacryst assemblages from Australia, West Germany and the U.S.A. Oxidation states range from ~- 0.25 log10 units more oxidized to 1 log10 unit more reduced than the iron-wüstite (IW) buffer. The overall reduced nature of the spinels and the range of ?O2's obtained are striking features of the data. One implication of the results is that the majority of mantle-derived magmas are initially highly reduced, and the relatively oxidized values observed at surface (~- 4–5 log10 orders more oxidized than IW) reflect late-stage alteration, perhaps by H2 loss (Sato, 1978).  相似文献   

7.
Thermodynamic calculations for selected silicate-oxide-fluorite assemblages indicate that several commonly occurring fluorite-bearing assemblages are restricted to relatively narrow ?O2-?F2 fields at constant P?T. The presence of fayalite-ferrohedenbergite-fluorite-quartz ± magnetite and ferrosalite-fluorite-quartz-magnetite assemblages in orthogneisses from Au Sable Forks, Wanakena and Lake Pleasant, New York, buffered fluorine and oxygen fugacities during the granulite facies metamorphism in the Adirondack Highlands. These buffering assemblages restrict?F2 to 10?29 ± 1 bar and ?02 to 10?16 ± 1 bar at the estimated metamorphic temperature of 1000K and pressure of 7 kbar. The assemblage biotite-magnetite-ilmenite-K-feldspar, found in the same Au Sable Forks outcrop as the fayalite-fluorite-ferrohedenbergite-quartz-magnetitie assemblage, restricts H2O fugacities to less than 103·3 bar. These fugacities limit H2 and HF fugacities to less than 101 bar for the Au Sable outcrop. The data indicate that relative to H2O, O2, H2, F2 and HF are not major species in the fluid equilibrated with Adirondack orthogneisses. The calculated F2 fugacilies are similar to the upper limits possible for plagioclase-bearing rocks and probably represent the upper ?F2 limit for metamorphism in the Adirondacks and in other granulite facies terranes.  相似文献   

8.
Calibration of five gas geothermometers is presented, three of which used CO2, H2S and H2 concentrations in fumarole steam, respectively. The remaining two use CO2H2 and H2SH2 ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were calculated in steam formed by adiabatic boiling of this water to atmospheric pressure to obtain the gas geothermometry functions. It is shown that the concentrations of CO2, H2S and H2 in geothermal reservoir waters are fixed through equilibria with mineral buffers. At temperatures above 230°C epidote + prehnite + calcite + quartz are considered to buffer CO2. Two buffers are involved for H2S and H2 and two functions are, therefore, presented for the geothermometers involving these gases. For waters containing less than about 500 ppm chloride and in the range 230–300°C pyrite + pyrrholite + epidote + prehnite seem to be involved, but pyrite + epidote + prehnite + magnetite or chlorite for waters above 300°C and waters in the range 230–300°C, if containing over about 500 ppm.The gas geothermometers are useful for predicting subsurface temperatures in high-temperature geothermal systems. They are applicable to systems in basaltic to acidic rocks and in sediments with similar composition, but should be used with reservation for systems located in rocks which differ much in composition from the basaltic to acidic ones. The geothermometry results may be used to obtain information on steam condensation in upflow zones, or phase separation at elevated pressures.Measured aquifer temperatures in drillholes and gas geothermometry temperatures, based on data from nearby fumaroles, compare well in the five fields in Iceland considered specifically for the present study as well as in several fields in other countries for which data were inspected. The results of the gas geothermometers also compare well with the results of solute geothermometers and mixing models in three undrilled Icelandic fields.  相似文献   

9.
Electron microprobe analyses of the spinel mineral group, ilmenite and rutile have been carried out on part of the Luna 20 soil sample. The spinel group shows an almost continuous trend from MgAl8O4 to FeCr2O4 and a discontinuous trend from FeCr2O4 to Fe2TiO4. Well defined non-linear relationships exist within the spinel group for Fe-Mg substitution, for divalent (FeOFeO + MgO) versus trivalent (Cr2O3Cr2O3 + A12O3), and for divalent versus TiO2TiO2 + A12O3 + Cr2O3. For Cr-Al substitution the relationship is linear and is negative for Mg-rich spinel and positive for Fe-Ti rich spinel. In general a combination of aluminous-rich chromite and ulvöspinel in the Luna 16 samples, combined with the chromian-pleonaste in Apollo 14 define comparable major compositional trends to those observed in Luna 20. Ilmenite is present in trace amounts. It is exsolved from pleonaste and pyroxene, is present in subsolidusreduced ulvöspinel and has undergone reequilibration to produce oriented intergrowths of chromite + rutile. Primary ilmenite is among the most magnesian-rieh (6 wt.% MgO) yet found in the lunar samples. The high MgO, inferred high Cr2O3 concentrations and the iron content of rutile (2.5 wt.% FeO) suggest crystallization at high temperatures and pressures for some components of the Luna 20 soil.  相似文献   

10.
The relative reactivities of pulverized samples (100–200 mesh) of 3 marcasite and 7 pyrite specimens from various sources were determined at 25°C and pH 2.0 in ferric chloride solutions with initial ferric iron concentrations of 10?3 molal. The rate of the reaction:
FeS2 + 14Fe3+ + 8H2O = 15Fe2+ + 2SO2?4 + 16H+
was determined by calculating the rate of reduction of aqueous ferric ion from measured oxidation-reduction potentials. The reaction follows the rate law:
?dmFe3+dt = k(AM)mFe3+
where mFe3+ is the molal concentration of uncomplexed ferric iron, k is the rate constant and AM is the surface area of reacting solid to mass of solution ratio. The measured rate constants, k, range from 1.0 × 10?4 to 2.7 × 10?4 sec?1 ± 5%, with lower-temperature/early diagenetic pyrite having the smallest rate constants, marcasite intermediate, and pyrite of higher-temperature hydrothermal and metamorphic origin having the greatest rate constants. Geologically, these small relative differences between the rate constants are not significant, so the fundamental reactivities of marcasite and pyrite are not appreciably different.The activation energy of the reaction for a hydrothermal pyrite in the temperature interval of 25 to 50°C is 92 kJ mol?1. This relatively high activation energy indicates that a surface reaction controls the rate over this temperature range. The BET-measured specific surface area for lower-temperature/early diagenetic pyrite is an order of magnitude greater than that for pyrite of higher-temperature origin. Consequently, since the lower-temperature types have a much greater AM ratio, they appear to be more reactive per unit mass than the higher temperature types.  相似文献   

11.
Experimental quartz solubilities in H2O (Anderson and Burnham, 1965, 1967) were used together with equations of state for quartz and aqueous species (Helgesonet al., 1978; Walther and Helgeson, 1977) to calculate the dielectric constant of H2O (?H2O) at pressures and temperatures greater than those for which experimental measurements (Heger, 1969; Lukashovet al., 1975) are available (0.001 ? P ? 5 kb and 0 ? T ? 600°C). Estimates of ?H2O computed in this way for 2 kb (which are the most reliable) range from 9.6 at 600°C to 5.6 at 800°C. These values are 0.5 and 0.8 units greater, respectively, than corresponding values estimated by Quist and Marshall (1965), but they differ by <0.3 units from extrapolated values computed from Pitzer's (1983) adaptation of the Kirkwood (1939) equation. The estimates of ?H2O generated from quartz solubilities at 2 kb were fit with a power function of temperature, which was then used together with equations and data given by Helgeson and Kirkham (1974a,b, 1976) Helgesonet al. (1981), and Helgeson (1982b, 1984) to calculate Born functions, Debye Hückel parameters, and the thermodynamic properties of Na+, K+, Mg++, Ca++, and other aqueous species of geologic interest at temperatures to 900°C.  相似文献   

12.
A precipitate of cobalt oxyhydroxides formed by bubbling oxygen through a dilute solution of Co(NO3)2 held at pH 9.0 and 25°C was aged for 23 months in contact with the original solution, with access to atmospheric oxygen. Co3O4 and CoOOH were identified in the precipitate by X-ray diffraction. Chemical equilibria involving these solids were evaluated by measurements of solution pH and Co2+ activities and by redox potential measurements and gave a ΔGcoOOH0 of ?92.3 ± 0.5 kcal/mole. This value and other thermodynamic data show relative feasibility of hypothetical reaction steps and changes in reaction paths during automated coprecipitation titrations and subsequent aging of a precipitate that finally contained βMnOOH, MnO2 (birnessite) and CoOOH.  相似文献   

13.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

14.
The behaviour of the ratios K2O/Na2O, SiO2/CO2, and SiO2H2O + CO2 + S in the alteration envelopes of a variety of epigenetic deposits is documented. It is concluded that the ratio K2O/Na2O is the most suitable for estimating proximity to ore during exploration drilling programs. The other two ratios are useful in indicating proximity to ore only under certain geological conditions. Before the use of ratios is contemplated in detailed exploration programs within a given mineral belt orientation studies should be carried out to determine the trend of the ratios with proximity to mineralization.  相似文献   

15.
Glasses from submarine lavas recovered by the ALVIN submersible from the Galapagos Spreading Center (GSC) near 86°W have been analyzed by electron microprobe for major elements and by high-temperature mass spectrometry for volatiles. The samples studied range in composition from basalt to andesite and are more evolved than typical MORBs. Previous studies indicate that they are related to normal MORB by extensive crystal fractionation in small, isolated magma chambers. The H2O, Cl and F contents of these lavas are substantially higher than any previously reported for MORBs. H2O, Cl and F abundances increase linearly with P2O5 content, which is used as an indicator of the extent of crystal fractionation. The Fe2O3(FeO + Fe2O3) ratios measured in the andesite glasses progressively decrease with increasing P2O5 content and are probably related to fractionation of Fe-Tioxides. Reduced carbon gas species, principally CH4 and CO, were discovered in these glasses. The presence of reduced carbon species in GSC glasses may be indicative of a more reduced oxidation state of the upper mantle than is commonly assumed.  相似文献   

16.
The geochemical processes operating on metals in anoxic marine waters influence metal mobility and mode of transport to the sediments in a manner different from that observed in oxic regimes. In order to better understand these processes, dissolved and particulate Mn, Fe, Co, Ni, Cu, Zn, and Cd concentrations were determined in the water column of a permanently anoxic basin, Framvaren Fjord, Norway. Class specific behavior determines the degree to which these metals are involved in the processes of redox cycling at the O2H2S interface and metal sulfide precipitation in the sulfidic water. Metal sulfide precipitation influences the magnitude of metal enrichment in the sediments. The transition metals, Mn, Fe, and Co, show active involvement in redox cycling, characterized by dissolved maxima just below the O2H2S interface. Nickel concentrations appear unaffected by processes influencing the profiles of the other metals. The metals, Cu, Zn, and Cd, display a dramatic solubility decrease across the interface, are not involved in redox cycling, and are enriched in the sediments relative to a lithogenic component by factors of 11, 105, and 420, respectively. Ion activity products of the metals and sulfide provide evidence that chemical equilibria with a pure metal sulfide solid phase is not the dominant process controlling dissolved metal concentrations in the sulfide containing waters.  相似文献   

17.
Basaltic glasses included in olivine phenocrysts from Kilauea volcano contain concentrations of H2O, CO2, and S similar to glassy Kilauean basalt dredged from the deep sea floor and greater than vesicular, subaerial Kilauean basalt. Our result contrasts with earlier reports that inclusions of basaltic glass in phenocrysts have little or no H2O and large ratios of CO2H2O. Our analysed inclusions of glass are larger than 100 micrometers thick and similar in chemical composition to the host glass surrounding the olivine crystals indicating that the trapped melts are representative of the bulk liquid from which the crystals grew. Crystallization of about 2–8% of olivine from the melts after they were trapped is indicated by slight departures from the experimentally established equilibrium distribution of Mg and Fe between olivine and liquid. The measured concentrations of CO2 correspond to phenocryst crystallization pressures of about 1.3 kbar for a subaerial basalt and about 5 kbar for a submarine basalt, consistent with geophysical models of Kilauea volcano. The compositions of volcanic gas predicted from our analyses are consistent with restored compositions of actual Kilauean gases. The rate of sulfur emission predicted from our analyses is greater than the sulfur dioxide emission rate observed during repose, but probably consistent with total degassing including eruptive episodes. The concentrations of H2O, K2O, Cl, and P in parental Kilauean basalt can be derived from upper mantle phlogopitic mica, pargasitic amphibole and apatite with compositions close to those of natural primary minerals in ultramafic xenoliths from continental kimberlites, or solely from apatite and phlogopitic mica with H2OK2O near 0.47 ± 0.03, slightly higher than the range of values reported. The amounts of phlogopitic mica and pargasitic amphibole contributing volatiles to Kilauean tholeiite is about 10 percent by mass of the parental liquid, or about 5% if the source does not include amphibole. In view of an estimated 20% of partial melting of mantle source rock to produce Kilauean tholeiites, there may be about 2 weight percent of mica plus amphibole in part of the mantle beneath Kilauea, or about 1 weight percent of phlogopitic mica if amphibole is absent.  相似文献   

18.
Speciation of aqueous magnesium in the system MgO-SiO2-H2O-HCl in supercritical aqueous fluids has been investigated using standard rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Eugster, 1973. Am. J. Sci.267, 268–286). A concentric double-capsule charge was utilized. The outer gold capsule contained the assemblage talc + quartz + Ag + AgCl + H2O-MgCl2 fluid; the inner platinum capsule, Ag + AgCl + H2O-HCl fluid. During the experiments, ?H2 and thus ?HCl equilibrated between the two capsules. After quenching, measurement of the chloride concentration in the fluid in the inner capsule and total magnesium in the fluid in the outer capsule defines the concentrations of HCl and Mg that coexist with talc + quartz in the outer capsule. Changes in the measured molality of HCl as a function of the total magnesium concentration at constant P and T were used to identify the predominant species of magnesium in the hydrothermal fluid. Experimental results showed that at 2000 bar, MgCl°2 is the predominant species above 550°C and Mg2+, below 400°C. Data at intermediate temperatures when combined with the dissociation constant for HCl were used to obtain the dissociation constant for MgCl°2. The results of these experiments were combined with results from experiments using Ag + AgCl in conjunction with the oxygen buffer, hematite-magnetite, to obtain the equilibrium constant for the reaction 13 Talc + 2HC1° H2O MgCl°2 + 43 Quartz + 43 H2O from which the difference in Gibbs free energy of MgCl°2 and HC1° was obtained as a function of temperature at 1000, 1500 and 2000 bar pressure, Solubility constants for brucite. forsterite, chrysotile, and talc were calculated.  相似文献   

19.
20.
Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2OAl2O3 = 1.6–2.6), are ultrapotassic (K2ONa2O = 9.6–150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2OCO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite.Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号