首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李婷  李猛  胡朝斌  李瑶  孟杰  高晓峰  查显锋 《地球科学》2018,43(12):4350-4363
祁漫塔格地区岩浆岩的成岩时代和形成环境的确定能对东昆仑造山带加里东期构造演化时限加以约束.对祁漫塔格西北部阿确墩地区石英闪长岩和二长花岗岩进行了年代学和岩石地球化学研究,结果显示,石英闪长岩属准铝质-弱过铝质钙碱性系列岩石;轻重稀土分馏明显,具中等-轻微铕负异常(δEu=0.79~0.90);相对富集Rb、K、Hf、Zr、Tb、Nd等元素,不同程度地亏损Ba、P、Ti、Nd、Ta、Y;具有I型花岗岩类特征.二长花岗岩属弱过铝质钙碱性系列岩石;轻重稀土分异程度极大,具明显铕负异常(δEu=0.42~0.45);富集大离子亲石元素(如Rb、K、La、Ce、Nd、Tb等),亏损高场强元素(P、Ti、Nd、Ta)和Ba、Sr、U等元素;为高分异I型花岗岩.Nd/Th、Nb/Ta、Mg#值等指标显示石英闪长岩为壳源特征且受到幔源岩浆的影响,推测是幔源岩浆底侵地壳物质发生部分熔融形成的;二长花岗岩则是壳源的,可能与幔源岩浆底侵诱发的上地壳物质部分熔融有关,且经历了强烈的结晶分离作用.石英闪长岩和二长花岗岩的LA-ICP-MS锆石U-Pb年龄分别为448.8±3.9 Ma和405.2±3.6 Ma,代表其形成时代.石英闪长岩总体显示出与俯冲消减作用有关的岛弧岩浆岩地球化学特征;二长花岗岩在构造环境图解中显示为碰撞背景,但微量元素与同碰撞花岗岩典型特征不符,综合分析认为形成于后碰撞构造背景下.结合区域构造演化,推测东昆仑祁漫塔格地区在晚奥陶世持续处于俯冲消减环境中,早泥盆世之前进入后碰撞造山阶段.   相似文献   

2.
《Gondwana Research》2002,5(2):453-465
The Kunduru Betta Ring Complex (KRC), at the southern margin of Dharwar craton, South India, comprises metaluminous sub-solvus syenites and quartz monzonite with a concentric disposition younging towards the center. An outer mafic syenite (of lamprophyric affinity) is followed by porphyritic monzonite, quartz monzodiorite and finally a quartz monzonitic stock at the centre.SiO2, Al2O3 and Na2O increase from the primitive lamprophyric mafic syenite to the quartz monzonite through the intermediate members, while CaO, MgO, Fe2O3T, TiO2, P2O5 and MnO show an opposite trend suggesting fractionation of hornblende, clinopyroxene, biotite, apatite, sphene, and iron oxide minerals. Rb, Th and U increase with a complementary decrease in Sc, V, Cr, Co, Cu, Sr and Ba from the outer mafic syenite to the inner quartz monzonite. Y, Zr and Hf decrease from lamprophyric mafic syenite to quartz monzodiorite and the trend is reversed in the final quartz monzonite phase. However, the suite is characterised by a compositional gap between quartz monzodiorite and quartz monzonite. Total REE gradually decrease from the mafic syenite to quartz monzonite and the REE distribution patterns show LREE-enriched and HREE-depleted parallel distributions with negligible Eu anomalies.The geochemical data suggest that the rock types were formed as products of progressive differentiation by crystal fractionation of calc-alkaline lamprophyric parent magma which was derived by partial melting of metasomatically enriched mantle in the Kabini lineament. Although the quartz monzonites conform to the trend of differentiated Kunduru Betta suite, the compositional gap between them and the quartz monzodiorite precludes their origin by simple differentiation. It is suggested that convective liquid fractionation might have resulted in the discrete body of quartz monzonite.  相似文献   

3.
大庙斜长岩的40Ar/39Ar年龄测定呈现出一条典型的马鞍型年龄谱,在中温阶段有二个明显的坪年龄1656±15 Ma和1029±7 Ma,结合其构造位置和全球斜长岩分布来看,它们分别代表了侵位年龄和后期热扰动的时代。密云奥长环斑花岗岩中角闪石的40Ar/39Ar坪年龄为1716±21 Ma。两者时空上密切相关,代表了裂谷作用初期非造山环境中双模式岩浆作用产物。斜长岩类和苏长岩之间稀土配分模式的相似性表明,它们明显为同一成因的岩浆分异系列的产物。  相似文献   

4.
From Casper Mountain; at its northern end, to the northwestern margin of the Laramie anorthosite—syenite complex, in its central parts, the Laramie Range is underlain by granite and granitic gneiss that has a minimum age of 2.54 ± 0.04 Ga (Rb/Sr whole-rock isochron) and by metasedimentary rocks, including marble and quartzite, that appear to overlie the granitic gneiss nonconformably (minimum age: 1.7 Ga based on several horn-blende K/Ar dates). Southward from the anorthosite—syenite complex into Colorado, the Range is underlain chiefly by the Sherman Granite (1.41 Ga; Peterman and Hedge, 1968) and scattered patches of gneiss that are not dated, but are tentatively correlated wit similar gneiss in the southern Medicine Bow Mountains and in the Colorado Front Range, where they are dated as ? 1.7 Ga (Peterman and Hedge, 1968).The Laramie anorthosite—syenite complex (minimum age: ? 1.42 Ga or ? 1.51 Ga if a hornblende K/Ar date is accepted) apparently intruded the suture separating the old (? 2.5 Ga) continental edge from younger (? 1.7 Ga) geosynclinal rocks. The suture, which manifests itself as the Mullen Creek—Nash Fork shear zone in the Medicine Bow Mountains, also is the boundary between ensialic and ensimatic geosynclinal deposition that occurred during the interval 1.7–2.5 Ga ago.K/Ar dates on biotite and muscovite from rocks north of the anorthosite—syenite complex grade from 2.5 Ga on Casper Mountain down to 1.38 Ga near the complex. Near its northern tip, the Laramie Range is crossed by a geochronologic front, separating 2.5 Ga old gneiss whose K/Ar dates were not lowered by subsequent metamorphism from 2.5 Ga old gneiss whose mica dates were reset between 1.4 and 1.6 Ga ago.  相似文献   

5.
以往将位于湘南、桂东北的都庞岭花岗岩基分为西体、中体和东体三部分。野外观察和岩相学研究表明,都庞岭中体和东体主要由黑云母正长花岗岩、黑云母二长花岗岩和二云母二长花岗岩组成,岩石具斑状结构,部分钾长石斑晶呈椭球状至球状,具斜长石环边,构成环斑结构。采用锆石SHRIMP U-Pb法获得都庞岭中体和东体中环斑花岗岩的侵位年龄分别为226.6±6.9 Ma和209.7±3.1 Ma,均属于晚三叠世,相当于印支晚期。都庞岭环斑花岗岩富硅、碱,贫钛、磷、镁和钙,其Rb、Cs、Th、U、REE、Pb、Y含量和Rb/Sr、Rb/Ba比值较高,而Sr、Ba含量和Zr/Hf比值(8.16~25.01)较低,具强烈的Eu负异常(δEu=0.02~0.13),10000×Ga/Al比值(2.64~4.38,平均3.15)高,显示A型花岗岩的地球化学特征。与华南印支早期S型花岗岩相比,都庞岭环斑花岗岩的εNd(t)值(-8.0~-8.3)明显偏高(前者低于-10),而tDM2值(1624~1645 Ma)则明显偏低(前者1800 Ma),表明它们可能直接源于地壳物质的部分熔融,但成岩过程中有地幔物质的参与。都庞岭环斑花岗岩的发现及其时代的确定,揭示了晚三叠世华南东部处于大陆裂解或造山后伸展的构造环境。结合华南东部沉积/岩石大地构造分析,认为华南早中生代构造体制的转换发生在中、晚三叠世,而非前人所认为的发生在中、晚侏罗世;同时,环斑花岗岩的出现,指示了华南中生代大规模成矿作用的来临,晚三叠世是华南中生代大规模成矿的第一个高峰期。  相似文献   

6.
藏东怒江板块结合带郭庆复式花岗岩体特征及其成因   总被引:1,自引:0,他引:1  
根据作者在“三江”地区进行1∶20万洛隆幅区域地质调查工作中收集的资料,对产出于怒江板块结合带东侧的郭庆复式花岗岩体进行了解体,将岩体划分为燕山早期的黑云母二长花岗岩,燕山晚期的黑云母石英正长岩、黑云母花岗闪长岩三种岩石类型。通过对它们的地质学、岩石学、岩石地球化学特征的研究表明,这三种侵入岩分属陆壳改造S型花岗岩和壳幔同熔Ⅰ型中酸性岩。燕山早期花岗岩形成于同碰撞造山期,燕山晚期黑云母石英正长岩形成于板块碰撞后的抬升阶段,燕山晚期黑云母花岗闪长岩形成于造山晚期构造环境,是区内板块构造不同演化阶段的产物。郭庆复式岩体的形成与三江地区板块构造演化密切相关  相似文献   

7.
The South Dehgolan pluton, in NW Iran was emplaced into the Sanandaj–Sirjan magmatic–metamorphic zone. This composite intrusion comprises three main groups: (1) monzogabbro–monzodiorite rocks, (2) quartz monzonite–syenite rocks, and (3) a granite suite which crops out in most of the area. The granites generally show high SiO2 content from 72.1%–77.6 wt.% with diagnostic mineralogy consisting of biotite and amphibole along the boundaries of feldspar–quartz crystals which implies anhydrous primary magma compositions. The granite suite is metaluminous and distinguished by high FeOt/MgO ratios (av. 9.6 wt.%), typical of ferroan compositions with a pronounced A‐type affinity with high Na2O + K2O contents, high Ga/Al ratios, enrichment in Zr, Nb, REE, and depletion in Eu. The quartz monzonite–syenites show intermediate SiO2 levels (59.8%–64.5 wt.%) with metaluminous, magnesian to ferroan characteristics, intermediate Na2O + K2O contents, enrichment in Zr, Nb, REE, Ga/Al, and depletion in Eu. The monzogabbro–monzodiorites show overall lower SiO2 content (48.5%–55.9 wt.%) with metaluminous and calc‐alkaline compositions, relatively lower Na2O + K2O contents, low Ga/Al ratios, and FeOt/MgO (av. 1.6 wt.%) ratios, low abundances of Zr, Nb, and lower REE element concentrations relative to the granites and quartz monzonite–syenites. These geochemical differences among the three different rocks suites are likely to indicate different melt origins. We suggest that the South Dehgolan pluton resulted from a change in the geodynamic regime, from compression to extension in the Sanandaj–Sirjan zone during Mesozoic subduction of the Neo‐Tethys oceanic crust beneath the Central Iranian microcontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
鞍山地区东鞍山花岗岩年代学、地球化学特征及成因研究   总被引:2,自引:1,他引:1  
鞍山地区位于华北地台东北部辽宁省,区内保留有3.8~2.5Ga连续的地质记录。对位于鞍山市南侧的东鞍山花岗岩进行了SHRIMP锆石U-Pb同位素分析、白云母Ar-Ar同位素分析及岩石地球化学分析。SHRIMP测年结果为3004±7Ma,代表岩石的形成年龄,Ar-Ar测年结果为2545±16Ma,代表岩石受到构造热事件扰动的时间。岩体地化特征为富硅(Si O2=72.95%~75.37%,平均值为74.18%)、富碱(K2O+Na2O=7.05%~8.45%)、富铝(Al2O3=12.95%~15.44%),低钙(Ca O=0.13%~0.66%)。在稀土元素配分图上,曲线呈明显的右倾趋势,且有较明显的负Eu异常,重稀土分馏不明显。在微量元素洋中脊玄武岩标准化蛛网图上可以看出,东鞍山花岗岩强烈亏损Nb、P、Sr、Ti,富集大离子亲石元素Rb、K、Nd和高场强元素Th、U。岩石地球化学特征表明东鞍山花岗岩岩浆来源为壳源,残留相可能由石榴石+辉石+角闪石+斜长石组成。将鞍山-本溪地区3个3.0Ga花岗岩(东鞍山花岗岩岩体、铁架山二长花岗岩岩体以及弓长岭片麻状花岗岩)的地球化学数据进行对比,发现三者的地球化学存在较大差异,为三个独立的岩体。三个岩体最初可能发育在一个陆块之上,然后在25.5亿年左右分离开来,最后在25亿年左右再次拼贴到一起。  相似文献   

9.
通化地区古元古代晚期花岗质岩浆作用与地壳演化   总被引:10,自引:10,他引:10  
广泛出露于华北板块东部辽吉地区的古元古代变质杂岩,多年来一直被认为是古老的陆内裂谷作用的产物,我们通过详细的野外地质调查工作发现,该变质杂岩中以往所划定的混合岩实际是不同变质程度和变形特征的岩浆成因花岗岩岩体,其岩石类型除典型的片麻状角闪正长花岗岩(俗称“条痕状花岗岩”或“辽吉花岗岩”)外,另有片麻状石英闪长岩、巨斑状黑云母二长花岗岩、巨斑状一环斑状舍石榴石花岗岩和角闪辉石正长岩等、,应用SHRIMP技术,本文对片麻状石英闪长岩和巨斑状一环斑状含石榴石花岗岩进行了结石U—Pb同位素年龄测定,结果显示它们的侵位时代为1872~1850Ma,与巨癍状黑云母二长花岗岩和角闪辉石正长杂岩侵位时代相近,岩石学一地球化学特征显示片麻状石英闪长岩是“Ⅰ”型花岗岩,具有岛弧型花岗岩地球化学特征;而巨斑状一环斑状含石榴石花岗岩(局部具有球斑状结构)属“S”型花岗岩结合区内与花岗岩形成同时发生的变质作用P—T特征,这种I-、S-和A-型花岗岩的同时产出,反映他们可能形成于造山后构造背景,结合朝鲜狼林一中国辽南和龙岗太古宙陆块的结晶基底差别,可以认定华北板块在太古宙末期并非仅由东、西部陆块组成,在东部陆块至少还存在朝鲜狼林-辽南-胶东联合陆块和龙岗-鲁西-五准陆块两个微陆块,这两个微陆块大约在1.90Ga左右发生拼合,然后它们再于1.85Ga左右与西部地块拼合  相似文献   

10.
拉热拉新花岗岩体属于唐古拉-东达山花岗岩带西段羌塘花岗岩区的组成部分,岩石类型主要为黑云角闪闪长岩、黑云角闪石英闪长岩、黑云角闪石英二长岩、黑云花岗闪长岩、黑云二长花岗岩、黑云花岗岩。其地球化学特征表现为:富Si,K,贫Ti,Mg,Fe,Ca,铝饱和指数ACNK〈1.1,稀土元素球粒陨石标准化图式呈右倾斜的“V”字型,LREE富集,HREE相对亏损,铕亏损。其形成时代为早白垩世,为多期次同碰撞的同熔型花岗岩。  相似文献   

11.
A suite of post-kinematic, 1.88–1.87 Ga, silicic plutons crosscut 1.89–1.88 Ga synkinematic granitoids in the Central Finland Granitoid Complex (CFGC) in south-central Finland. The plutons range from biotite±hornblende quartz monzonite to syenogranite and include pyroxene- and olivine-bearing varieties. Mineral chemical data on feldspars, biotite, amphibole, pyroxenes, olivine, and oxides of the post-kinematic plutons are presented. The data are interpreted to show that these plutons register (1) a considerable range in pressure from 2–4 kbar (amphibole barometry) to 5–7 kbar (olivine–pyroxene barometry), (2) temperatures mostly reflecting resetting during cooling (450–800°C; QUIlF thermometry), and (3) low fO2 (log fO2 ΔFMQ −0.3 to −1.5; QUIlF equilibria). In particular, plutons with olivine- and pyroxene-bearing margins and amphibole-dominated central parts record progressive oxidation and hydration upon cooling, shifting from the QUIlF equilibrium toward KUIlB. The post-kinematic granites can be considered post-collisional in regard to compressional events in the CFGC and display many of the characteristics of the anorogenic 1.6 Ga rapakivi granites further south. They were presumably derived from a deep and dry crustal source, like the rapakivi granites.  相似文献   

12.
This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith.The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite—hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts.Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends.Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720°C. In the south ilmenite and manganian fayalite indicate fO2 of 10?17 or 10?18 bars. Biotite and fayalite compositions and the ‘granite minimum’ imply completion of crystallization at about 700°C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity.All types of syenite and granite contain 5–6% K2O through a range of SiO2 of 63–76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03–0.4%; FeO averages 1.9–2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%.The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite, Mass., and syenite of Kungnat, Greenland, among others — allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence.A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid — mostly olivine, clinopyroxene and plagioclase.  相似文献   

13.
通过高精度的LA-ICP-MS锆石U-Pb测年,获得北山南带小西弓金矿区石英正长斑岩的形成年龄为247.5±2.2Ma,属中三叠世。地球化学分析表明,该岩体为准铝质、钾玄岩系列,主量元素高硅(Si O_2=65.8%~66.2%)、富碱(Na_2O+K_2O=8.99%~9.41%)、低钙(Ca O=1.72%~2.19%)、贫镁(Mg O=0.63%~0.70%);轻稀土元素富集,重稀土元素亏损,弱负Eu异常。大离子亲石元素Rb、Th、U、K和Pb富集,同时Ba、Sr、P、Ti和Eu亏损,并具高104*Ga/Al值和高Zr+Nb+Ce+Y含量,表现出A型花岗岩的特征。北山南带三叠纪岩浆活动强烈,高分异I型-A型花岗岩大量发育,暗示区域内三叠纪处于造山后伸展环境。  相似文献   

14.
The whole-rock Pb-Pb method has been used to date four of the younger, mainly adamellite, late-tectonic plutonic phases within the ca. 3.5 Ga Shaw Batholith of the Archaean east Pilbara Block. Three suites give ages within error of 2966 Ma (Porphyritic Granites at 2948±50 Ma, Leuco-adamellites at 2943±46 Ma and Garden Creek Adamellite at 3007±48 Ma). The post-tectonic Cooglegong Adamellite gives an age of 2847±34 Ma. The Sm-Nd model isotopic systematics of all four suites indicate derivation from crust ranging between ca. 3200 and 3600 Ma in age. The sources for these four younger plutonic phases were heterogeneous and, although exhibiting some isotopic characteristics of the older (3.5–3.3 Ga) calc-alkali plutonic suites, were more depleted in the LIL elements Rb, U and Th. In addition, the Garden Creek Adamellite and the Cooglegong Adamellite lack the very fractionated and HREE-depleted REE patterns characteristic of both the older calc-alkali plutonic rocks and the Porphyritic Granites and Leuco-adamellites. The crust underlying the Shaw Batholith at ca. 2950 Ma must have been both markedly heterogeneous and variably depleted, a conclusion consistent with the complex tectonic and plutonic evolution of this region.  相似文献   

15.
Controlled by E-W-trending faults, a Proterozoic (1.4-1.8 Ga old) rapakivi granite suite was intruded inBeijing and the area to its east (within Hebei Province), forming three parallel belts of igneous rocks. Theisotopic, trace element and rare earth element geochemical data of a bimodal rock association made up ofanorthosite, gabbro and alkali basalt and olivine-bearing quartz-syenite, rapakivi granite and trachyte as wellas potassic A-type granites and anorogenic granites—— all suggest that there exists an incipient rift in thestudy area. Fractional crystallization of a mixed magma formed by the magma derived from the upper mantleand the magma derived by small degrees of fusion of the lower crust produced anorthosite cumulates. Thewater-deficient granitic magma was differentiated into a subalkaline series. When the fractional crystallizationwas incomplete, rhythmic eruptions took place.  相似文献   

16.
The Mistastin Lake meteorite crater lies completely within a batholith composed of mangerite and adamellite with lenses of anorthosite and is located in central Labrador. The multivariate statistical technique of correspondence analysis was used to summarize the relationships between the different rock units for the trace elements Nb, Zr, Y, Sr, Rb, Th, Pb, Zn, Cu, Ni. The samples of impact melt form a linear array of points on a factor plot joining the anorthosite samples to the mangerite and adamellite samples. This indicates that the various melt samples can be formed as a result of the complete fusion of different proportions of anorthosite and granitic rocks. A least-squares mixing model utilizing the average trace element composition of the four rock types indicates that an average melt rock can be formed by mixing 60% anorthosite, 38% mangerite and 2% adamellite. An isochron obtained on the combined mangerite and adamellite units of the batholith gives an age of 1347 ±15 m.y. (1σ) with an initial ratio of 0.7082 ± 0.0003. The anorthosite samples plot below the isochron and the melt rocks fall along a mixing line joining the locus of anorthosite points to an average granite sample on the isochron. This is a further indication that the melt was formed by melting of anorthosite and granitic rocks that form the local geological environment.  相似文献   

17.
浙东南某些中生代侵入岩体的^40Ar—^39Ar年龄测定   总被引:13,自引:3,他引:13  
采用~(40)Ar~(39)Ar定年技术测定了浙东南几个侵入于磨石山群中的燕山期中酸性岩侵入体的年龄。梁弄岩体的石英闪长岩和二长花岗岩的年龄为101Ma,龙王堂岩体的花岗岩和钾长花岗岩的年龄均为110Ma,山头郑石英闪长岩年龄为108Ma,洪公石英正长岩的年龄为124Ma。此年龄范围与早白垩世太平洋洋底快速扩张期相当。  相似文献   

18.
Anorthosite—adamellite complexes are the chief manifestations of Elsonian magmatic activity of Paleohelikian age (about ?1500 to ?1400 Ma) in Labrador, Canada. Magmatism of similar age and anorogenic character, though with fewer occurrences of massif anorthosite, is present in a belt across the mid-continent and southwestern United States. Anorthosite—quartz mangerite complexes in the Grenville Province lie along the trend of this belt and, although few ages older than the profound Grenvillian regional metamorphism about ?1100 Ma have been determined on them, circumstantial evidence suggests that these also are dominantly of Paleohelikian age.The Labrador complexes are intruded into high-grade metamorphic terrane, older by at least 200 to 300 Ma than the Elsonian magmatism. Typical association of anorthosite massifs with high-grade metamorphic terranes, in Labrador and elsewhere, is probably due to their intrusion into older, stabilized, cratonic crust. The anorthosite—adamellite (and anorthosite—quartz mangerite) complexes are products of bimodal magmatism, and an anorogenic cratonic setting is considered to be of fundamental importance to development of the suites. Olivine tholeiite magmas fractionate to produce high-A1 tholeiitic magmas at or near the base of the cratonic crust, and these magmas are the parents from which anorthosite massifs develop by plagioclase fractionation at higher levels within the crust. Adamellite (quartz mangerite) magmas develop mainly by partial fusion of deep crustal rocks, caused by heat of crystallization from the fractionating olivine tholeiite magmas in the staging region, at or near the base of the crust, and are intruded upward into the crustal complexes; rapakivi textures and chemistries are characteristic products of these magmas. Ferrodiorites, widely associated with anorthosite massifs, probably form as late-stage fractionation products of basic magmas in the subcrustal staging region and are intruded into the massifs in their final stages of development (before intrusion of adamellite or quartz mangerite magmas).The Neohelikian record, dominated by terrestrial sedimentation, basaltic extrusive and intrusive activity, and alkalic magmatism, began soon after ?1400 Ma in the mid-continent United States, central Labrador and southern Greenland. The lithological assemblages have been interpreted by several authors as similar to those of intracontinental rift zones. The following sequence of events: intrusion of Paleohelikian anorthosite—adamellite complexes (granitic intrusion and/or rhyolitic extrusion only, in some places), strong uplift and erosion, crustal attenuation causing basin formation, Neohelikian terrestrial sedimentation, rifting or incipient rifting, renewed basaltic magmatism, and alkalic magmatism, is believed to record a continuing evolving process of mantle—crust interactions over a broad belt across North America.  相似文献   

19.
安徽庐枞地区位于下扬子断陷带内,区内中生代岩浆活动强烈,壳幔交换频繁,形成了一系列A型花岗岩类,其中产有一些同源岩石包体。这些A型花岗岩类以富碱富钾为特征,为准铝质硅饱和岩石,具有高的104×Ga/Al比值和REE含量,明显富集Rb,Th,K等大离子亲石元素,而Nb,Ta,Ti和Zr等高场强元素和Sr,P相对亏损。与寄主岩相比,岩石包体SiO2和全碱含量偏低,Cr,Co,Sc,V等元素明显偏高,Zr和Eu的负异常不明显。包体和寄主岩的(87Sr/86Sr)i 值为0.7053~0.7089,εNd(t)值为-2.2~-8.66。这些资料表明,庐枞地区中生代A型花岗岩类是起源于富集岩石圈地幔的玄武质岩浆与地壳物质发生轻度同化混染作用,并经历结晶分异作用的产物,在岩浆演化过程中,结晶分异作用发挥着主导作用。从岩石组合来看,庐枞地区的A型花岗岩类主要由石英正长斑岩、正长斑岩、辉石二长岩和碱长花岗岩组成,属于碰撞后准铝质镁铁质-长英质岩套的一部分。岩石样品分析数据在Nb-Y-Ce,Nb-Y-3Ga和Rb/Nb-Y/Nb图上的投影结果表明,庐枞A型花岗岩类为碰撞后环境结束阶段的产物。结合区域地质背景分析,可以认为庐枞地区A型花岗岩类形成于岩石圈伸展背景下的碰撞后岩浆活动的末期,其出现可能标志着碰撞后环境的结束。  相似文献   

20.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号