首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tracer experiments using quartz in sized ranges to simulate gangue minerals provide information on how impeller speed, air rate, and particle size determine the concentration of gangue in the uppermost pulp layers. Tests with and without a froth will contribute towards an understanding of the selective action of the froth column.Results indicate that the laboratory machine-operating conditions required for flotation coincide with a hydrodynamic region which is responsible for fine-gangue transfer from the pulp into the froth column by elutriation and entrainment process acting in the pulp, thus compromising the selective action of the flotation process itself.Topics are suggested requiring further investigation and mention is made of machine design features to which attention should be paid in attempting to reduce gangue transfer from pulp to froth.  相似文献   

2.
A model is developed by taking into account the simultaneous mechanisms of true flotation and entrainment in a conventional flotation cell. The total volume of the cell is divided into three compartments: pulp collection zone, pulp quiescent zone and froth region, with the mechanisms being modeled as occurring at the same time but originating at different places: true flotation from the collection zone and entrainment from the quiescent one. A particle is referred to as suspended in water or attached to an air bubble, depending upon its original state before crossing the pulp–froth interface (whether or not it remains in that state all the way to the concentrate launder). The model is obtained by solving a set of equations describing the mass conservation of solids and water between adjacent compartments. The principal mass transfer factors are identified as: the flotation rate constant, the mean residence time in the collection zone, the froth recovery of attached particles, the degree of entrainment through the froth and the water recovery from the feed to the concentrate. The development presented here allows the intricate nature of the mass transfer in a flotation cell to be reduced to one single equation, overcoming the need of numerical methods for simulation purposes. Moreover, it is shown that reliable prediction of grade and recovery can be obtained without detailed information on the pulp hydrodynamics or on any froth sub-process either than drainage, bubble bursting and bubble coalescence.  相似文献   

3.
A laboratory flotation column using Venturi aerators and a vacuum system to remove froth was used to investigate the contribution of gas flow, pulp flow, cell volume and froth retention time on the ink removal efficiency and on cellulose fibres and mineral fillers loss. The increase in the gas flow from 4 to 8 L/min gave a general rise of particle transport from the pulp slurry to the froth with an ensuing strong increase in ink removal, from 75% to 85%, and water and total loss, from 10% to 40% and 15% to 30%, respectively. Whereas, the increase of the cell volume from 14 to 24 L improved ink removal from 72% to 80% without considerably affecting flotation loss. The rise of the froth retention time in the flotation cell from 5 to 20 s before removal gave a general decrease in the flotation loss from 20% to 11% without a corresponding decrease in ink removal. This trend was interpreted as reflecting poor ink drainage through the froth. The increase of both pulp and froth retention time in the flotation cell appeared as the most favourable way to improve ink flotation selectivity. A mathematical model, describing particle removal during flotation in terms of true flotation, entrainment and drainage, was proposed and used to fit experimental data.  相似文献   

4.
5.
The limitations of pulp chemistry measurements in the flotation of a platinum group mineral (PGM) bearing Merensky ore were demonstrated in Part 1 of this article. In this paper the importance of the contribution of the froth structure due to changing froth stability is analysed using the batch flotation data. The effects of mild steel (MS) and stainless steel (SS) milling media and the addition of copper sulphate on the flotation performance of the sulphide minerals in Merensky ore have been evaluated in relation to the changes in stability of the froth phase. The effects of pulp chemistry and froth stability on the flotation of sulphide minerals were distinguished by using two different rate constants (kt and kw). The rate constant (kw) calculated as a function of cumulative water recovery was used to describe characteristics of froth phase and kt was calculated as a function of flotation time. The results revealed that the type of grinding media and copper sulphate addition had an interactive effect on the froth stability. While mild steel (MS) milling increased the froth stability due to the presence of hydrophilic iron hydroxides and colloidal metallic iron, the addition of copper sulphate reduced the stability, especially with stainless steel (SS) milling. Copper sulphate addition had a dual role in the flotation of Merensky ore in that it caused destabilisation of the froth zone as well as activation of selected sulphide minerals. The dominant effect was found to depend on the type of milling media and floatability of the mineral in question and this work has demonstrated the importance of using a combination of measurements to evaluate flotation performance holistically.  相似文献   

6.
The need to obtain accurate, operator-independent data from small-scale laboratory flotation tests has become particularly apparent in the treatment of fine coal. The work described suggests a method for reducing operator dependency by removing the flotation froth uniformly. This is achieved using a perspex insert to change the geometry of the cell, by maintaining a constant pulp level height and by removing froth from the full width of the cell and at a fixed depth.A comparison is made between the modified cell and a conventional Denver cell by obtaining equilibrium and kinetic data for each cell from two independent operators.The comparison shows a reduction in the variability of the results obtained from the modified cell.  相似文献   

7.
The importance of the cleaning action of the froth has been recognised. In order to observe the effect of various mechanisms on the gradients of mineral concentration in the froth, experiments were performed in a flotation cell using a deep froth phase where transverse motion of the froth was reduced to a minimum. The variables chosen for study include gas rate, baffling of the froth and product removal rate. The mineral studied comprised a mixed Cu, Zn and Fe sulphide with a siliceous gangue. A model based on counter-current plug-flow assumptions is advanced to describe some of the effects observed. A number of these effects are simulated using this model, leading to a better understanding of some of the processes occurring in the froth.  相似文献   

8.
Data are presented which illustrate a range of flotation behaviour observed for roughing and cleaning operations in industrial plants. Differences are observed in the size by size recoveries in cleaner flotation from those measured in the roughers.The implications of these differences to flotation modelling are discussed, and the importance of conducting confirmatory laboratory batch flotation tests is emphasized.Batch flotation tests have indicated that for certain minerals the flotation characteristics in the cleaner tests are substantially different from those in rougher tests conducted under the same conditions of pulp level, impeller speed, aeration rate and froth removal. The differences are most pronounced for the coarse particles.Computer simulations of a rougher-cleaner circuit have been done to illustrate the effects of these differences on predicted circuit performance. The differences are significant and arise mainly from differences in the behaviour of coarse particles.  相似文献   

9.
The paper discusses the obstacles in the way of making mathematical models of flotation circuits for use in process design; and describes also a route towards simple, but practical, models of full-scale flotation plant performance, which overcome the major problems. The principal difficulties lie in simulating the froth processes at full-scale. Timed batch tests may be used to identify the pulp-froth transfer processes, and steady-state (“equilibrium”) cell tests may be used to identify static froth concentration profiles. Froth mobility in a real cell is different from that in an “equilibrium” cell, and this paper shows how these dynamic patterns have been investigated, and may be used to simulate full-scale circuits. It is shown that it is not possible, at the present time, to completely eliminate judgement and experience from the establishment of parameter values; but the position should improve as experience accumulates.  相似文献   

10.
Accurately estimating entrainment is crucial when predicting flotation performance as it is essential for determining the concentrate grade achieved. It has been found previously that the amount of gangue entrained is proportional to the water recovery; this proportionality is referred to as the entrainment factor. Experimentally it has been found that entrainment is a strong function of particle size, as well as being dependent on other cell operating parameters such as froth depth and air rate.A simplified theoretical model for entrainment is developed which includes the effects of liquid motion and content, particle settling and particle dispersion. First, a detailed one-dimensional differential model for the entrainment factor is developed and solved numerically. Thereafter, a simplified analytical expression for the entrainment factor is produced which is a good approximation to the more detailed one-dimensional model. Both these models are shown to predict closely experimental trends for entrainment as a function of particle size and froth depth.  相似文献   

11.
The flotation rate of galena was investigated as a function of air flow rate (AFR) and froth thickness (from 0 to 6 cm) in a batch flotation cell designed to produce a quiescent froth-liquid interface. This cell design limits mechanical breakage of the froth and prevents the hydraulic entrainment of fine particles into the froth phase. The overall transfer rate was characterized by a first-order rate constant, the overall rate constant (ORC). The ORC was found to increase with increasing AFR and with decreasing froth thickness. The transfer rate of material from the slurry to the froth was also determined as a function of AFR, and characterizes by its first-order rate constant, the flotation rate constant (FRC).The froth transport constant (FTC), the first-order constant which characterizes the transport of galena from the froth over the cell lip, was then determined from the ORC and the FRC. The FTC was found to increase with increasing AFR and decreasing froth thickness. For a froth thickness of 5 cm and low-to-intermediate AFR, the FTC was found to be significantly lower than the FRC.The FTC of galena particles of 0–12, 12–32 and 22–40 μm was also determined. At a froth thickness of 5 cm, the FTC decreased with increasing particle size over the full experimental range of AFRs.  相似文献   

12.
Hydrophobic quartz and hydrophobic galena were found to destabilize the froth formed when an aqueous solution of non-ionic surfactant was shaken. A relationship between the particle size and the mass of solids required to effect a constant degree of stabilization of the froth was found to hold for hydrophobic quartz from 4 μm to 400 μm and for xanthated galena from 15 μm to 38 μm. This relationship shows that the natural thinning rate of a film between bubbles in a froth is the rate-determining step in the rupturing of the film.  相似文献   

13.
The detailed flotation behaviour observed in industrial zinc cleaning circuits at Broken Hill differs markedly from that commonly reported for rougher and scavenger flotation. Flotation is strongly influenced by solids to liquid ratio (pulp density) and the behaviour can be described by an exponential relationship between the flotation rate coefficient and the pulp density in each cell. The dependence on pulp density is largely independent of mineral type but does depend upon particle size. The largest variation is observed for coarse particles.The observations are of considerable significance to control of circuit performance. The results of simulations incorporating the dependence of rate coefficient upon pulp density differ substantially from those obtained from conventional models which assume constant rate coefficients.  相似文献   

14.
Optimisation of flotation parameters using rate models is not a new concept. The kinetic model based on time recovery data, which uses the extra dimension of rate, has been in vogue since time immemorial for scaling up of lab data. Often, interpretation on the performance of a flotation circuit, based only on R (the ultimate recovery) and ks (the first-order rate constant of the component) may lead to wrong conclusions. In such cases, a modified flotation rate constant kmod defined as the product of R and ks, i.e., kmod=Rks and selectivity index (SI), defined as the ratio of the modified rate constant of valuables to the modified rate constant of gangue, can be used. An attempt has been made in this paper to optimize the batch laboratory froth flotation parameters of fine coal using the above two concepts, i.e., kmod and SI and statistical techniques.A flotation bank containing four Outukumpu cells was optimized using the results obtained from the lab study. The airflow number and the froth number were used as a basis for scale up. To gauge the performance of the froth flotation circuit, an efficiency parameter called the coefficient of separation or the CS was used. The yield from the flotation circuit improved, the froth ash reduced and the rejects ash went up.  相似文献   

15.
It is well known that the chemical environment determines the success of the flotation process, however its characterisation and control is difficult to achieve. This paper, as two parts, Part I and Part II, evaluates the use of various measurements and their interpretation to gain an understanding of the influence of varying parameters such as the type of milling media and copper sulphate addition on the flotation performance of sulphide minerals from a platinum group mineral (PGM) bearing Merensky ore. It shows the complexity of interpretation and the importance of analysing flotation performance holistically. Part I focuses on the pulp chemistry and mineral potential measurements have been used to show the differences in the response of the various mineral electrodes to different conditions. The final flotation recoveries of the sulphide minerals in the ore followed the same trend as the decrease in mineral potential due to collector addition viz. chalcopyrite > pentlandite > pyrrhotite. Type of milling media and copper sulphate addition slightly affected the mineral electrode potential and flotation recovery of chalcopyrite. Addition of copper sulphate increased the recovery of pentlandite and particularly pyrrhotite due to activation by copper (II) ions. The copper activation mechanism was likely to be in the form of initial adsorption of copper hydroxide followed by reduction to Cu+ at the surface. However, the changes in flotation performance of the different minerals in the ore could not be completely described by the electrochemical changes, demonstrating the limitations of these measurements. Part II addresses the effect of froth stability as demonstrated by the variations in the mass and water recovery data resulting from the different milling conditions and addition of copper sulphate which emphasised the importance of considering the froth phase in the evaluation of flotation data.  相似文献   

16.
A robust and reliable sensor to measure gas (air) superficial velocity (Jg) continuously in flotation systems is introduced. It is based on the sampling of bubbles by buoyancy with the accumulating air allowed to exit through an orifice. At steady state, pressure drop is measured and related to the Jg by prior calibration. The continuous device is readily automated and extended to a multi-unit set-up. The sensor and data collections are described. The governing gas flow equation and models of the dynamic response to air flow rate set point change and fluctuations in froth depth are derived. Model predictions are confirmed against plant data. By taking a moving average, the Jg remains valid in the face of typical plant disturbances.  相似文献   

17.
When paraffinic gases (ethane, propane or butane) are used as the gas phase in froth flotation systems, the rate of flotation and recovery are generally increased as compared with air. The mechanism of the effect of paraffinic gases in froth flotation was studied and it was shown that they co-adsorb with the collector on the mineral surface. The adsorption of collector and gas on the surface was studied on the system quartz-dodecyl ammoniumchloride (DACl)-propane and ethane. It is shown that the contact angles in this system are significantly larger than when air is the gas, over a wide range of concentrations of DACl.The extent of adsorption of gas on the solid, for low concentrations of DACl, is of approximately 6.5 mols of propane per mol DACl and 7.3 mols of ethane per mol DACl. Increasing the concentration of DACl caused a decrease in the absorbed gas DACl ratio, which reached a value below 1:1 for the highest concentration tested. The co-adsorption of paraffinic gas and interfacial phenomena are interpreted in terms of effective chain length of the surfactant (DACl).  相似文献   

18.
The properties of thin liquid films (TLF) are of paramount significance for colloidal disperse systems, and a number of industrial processes, including froth flotation. In flotation, the bubble–particle attachment is controlled by the thinning and rupture of the intervening liquid film between an air bubble and a mineral particle. The froth evolution and its transient stability are also a function of the drainage and rupture of liquid films between air bubbles. Surface-active substances (surfactants) are used as flotation reagents to control the behavior of the liquid films. This paper presents a review of our research in the area of surfactant adsorption, surface forces and liquid films. It mainly focuses on the validation, application and extension of the Stefan–Reynolds theory on the liquid drainage. The extension of the Stefan–Reynolds theory comprises surface forces (disjoining pressure), surface tension variation, caused by the adsorption and diffusion of surfactants. Both the experimental and theoretical results are mostly related to the free (foam) films formed between two bubbles but can be principally extended to emulsion films between two oil drops and wetting films between an air bubble and a solid surface.  相似文献   

19.
Laboratory batch flotation tests were carried out on a deslimed (+6 μm) sulfiderich cassiterite ore, an ultrafine fraction (?6 μm) of a cassiterite ore and a bituminous coal. Chemical conditions were kept constant but the water recovery was varied by changing the height of the froth column and the rate and depth of froth removed. The recovery of the floatable mineral in each system was then found to be linearly related to the weight of water recovered. The intercept of the regression line on the mineral recovery axis, where the water recovery is zero, was interpreted as the recovery due to true flotation. The entrainment contribution was proportional to the slope of the line. In this way the contributions of entrainment and true flotation to overall recovery were separated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号