首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The apatite in various igneous rocks (from quartzmonzonitic to gabbroic composition) in one and the same area of differentiation was geochemically examined. The samples were taken from 24 different localities in the Odenwald (Germany) and the thin sections were determined petrographically with a point counter. 25 kg of each sample were dressed and the apatite separated from the heavy mineral concentrates. The pure apatite was analysed quantitative chemically. The variable components of the apatite are represented diagrammatically as functions of the rockchemistry, the physical- and the X-ray constants and their relationships are discussed. The following relations were established: The F-content of magmatic apatites increases in the acidic rocks without showing a stringent lawfulness to the rockchemistry. F remains in all apatites, compared with Cl, OR and 0, alwavs in predominance.With increase in the content of F the refractive index, as well as the lattice constants of the apatites, decrease.The Cl-content of magmatic apatites increases towards the basic rocks, but here too it remains much less than the amount of F. Further more all other statements refering to F can be applied to Cl, but with opposite meaning.A comparison of the chemical analyses of apatites from the newer literature and these of the author reveals in all probability that there is only a limited miscibility between F- and Cl-apatites. The limit being 20 atom per cent Cl. The relation of F : Cl as 1:1 in some apatites might be attributed to an orderly arranged state of the F- and Cl-apatites.OH behaves in a similar manner as Cl, except that the results have wider dispersion effect.According to the chemical equivalence calculations there is generally a small excess of cations. This means that Oxygen must fill up free halogen-places in the lattice.The content of SiO2 of the apatites shows an increasing tendency towards in the basic rocks and the content of P2O5 a decreasing one.The contents of the rare earths of magmatic apatites increase in acidic rocks and only those ones with even numbers (with the exception of La) appear.Only apatites from rocks with metamorphic characteristics had an amount of SO3.By means of a comparison between the exploit of apatite and P2O5-contents of the rocks can be supposed with probability that the principal quantity of the P2O5 in the magmatic rocks is not bound to the apatite but to the silicates. This supposition will shortly be further examined.The relative increasing of the intensity of the line (0002) and (0004) in the X-ray-graphs (X-ray-goniometer) in the F-rich apatites suggests a better (0001)-cleavage as in the Cl-rich apatites. This observation can be explained easily with the different structures of the F- and the Cl-apatites.  相似文献   

2.
The Xu-2 Member of the Upper Triassic Xujiahe Formation (Hechuan area, southwestern China) is an important potential sedimentary sequence for gas exploration in the central Sichuan Basin. Thus, we performed a comprehensive study of drilling parameters, sedimentary cores, well logging, and core test data and combined our results with previous research and the geological background of the basin. We found that the Hechuan area was a delta front that included underwater distributary channels, interchannels, and mouth and distal bars during deposition of the Xu-2 Member. The sand body genetic types were divided into three categories based on where they developed: an underwater distributary channel, a mouth bar, or a distal bar. The lithology of the Xu-2 reservoirs is mainly feldspathic litharenite, lithic arkose, subarkose, litharenite, and sublitharenite. Residual intergranular pores and intergranular dissolution pores are the major pore types in the reservoirs. Reservoirs with porosities of 0.18–15.84% and permeabilities of 0.001–8.72?×?10?3 μm2 showed a correlation coefficient of 0.7592. The reservoir throats are mainly tubular and constricted. Overall, the sedimentary environment and diagenesis are the major controlling factors for reservoir formation in the study area. The reservoir zones with relatively high porosity and permeability mainly developed in a delta front with underwater distributary channels and mouth bars. Chlorite growth preserved the primary pores during early diagenesis stage B, and intergranular dissolution pores resulted from contact with organic acids derived from source rocks during middle diagenesis stage A1. Compaction and cementation significantly decreased porosity during middle diagenesis stage A2. These important factors influenced reservoir quality.  相似文献   

3.
Diatomite associated with the Kolubara Coal Basin was studied to better understand early stage silica diagenesis of shallow water deposits. The Kolubara Basin consists of Neogene siliciclastic rocks, diatomite, marlstone and rare carbonates. Palaeozoic metamorphic and Mesozoic sedimentary and igneous basement rocks are transgressively overlain by Upper Miocene sandstone, siltstone, shale and mudstone. This Upper Miocene section is transgressively overlain by the Pontian section, which contains diatomite and coal beds. White and grey diatomite forms beds 0.7-2.2 m thick that are continuous over an area of about 2 km2. Siliceous rocks vary in composition from diatomite (81-89 per cent SiO2) to diatom-bearing shale (58-60 per cent SiO2). Siliceous deposits are laminated in places, with the laminae defined by variations in clay minerals, organic matter and diatoms. Diatomite shows only incipient diagenesis characterized by the fragmentation of diatom frustules, the minor to moderate corrosion of frustules and the formation of minor amounts of opal-A' (X-ray amorphous inorganic opal) cement. The low degree of diagenesis results from the young age of the deposits, low burial temperatures and possibly also from the presence of abundant organic matter and the dissolution of kaolinite. The presence of only weak diagenesis is also reflected by the characteristically poor consolidation of the rocks and low rank of the associated coal.  相似文献   

4.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

5.
阿西金矿地处川甘陕“金三角”成矿集中区,中三叠统为本区内最重要的金矿源层和赋矿层。阿西金矿田的形成经历了一个从沉积-成岩-富集成矿的漫长复杂的由量的积累到质的飞跃过程,是多阶段、多层次、多因素作用有机结合的产物。赋矿岩系特征表明,阿西金矿田的主要成矿环境为半深海斜坡环境。区内岩石类型极为复杂,三大岩类均有产出。主要有细砂岩、杂砂岩、沉凝灰岩、碳酸盐岩、硅质岩;变粒岩、石英岩、角岩、大理岩、夕卡岩、角砾岩;岩浆岩类主要为英安斑岩(玢岩)、闪长岩等。其中最重要的赋矿岩石为石英岩,其主要特征为具块状、不规则条带状构造,呈褐黄色/浅灰色变余层状构造。由石英(75%-80%)、高龄石(10%-15%)、绢云母(2%-3%)、钛铁质(3%-4%)、玉髓(2%-3%)及少量碳质组成。其岩石化学成分与典型硅质岩相比,SiO2偏低,Al2O3总体偏高,出现较强的高岭土化。通过研究认为,该区主要赋矿岩石石英岩的原岩应属正常碎屑沉积岩。  相似文献   

6.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

7.
In situ analysis of detrital apatite is a significant approach to sedimentary provenance analysis, which is an important aspect in sedimentary geology study. Several trace elements such as Sr, Y and Rare Earth Elements (REEs) concentrate in apatites, and the distribution of these elements depends on the content of SiO2 and the distribution coefficient of the melt, thus the trace element abundances is obviously different in different rocks. These features can be used to indicate parent-rocks of detrital apatites in sedimentary rocks. The approaches and proxies of detrital apatite to sedimentary provenance analysis can be summarized as follows. ①elemental geochemistry, such as Sr, Y, REEs, the approaches including chondrite-normalised REE distribution patterns of apatites, Classification and Regression Tree (CART) and discriminant plots of REE parameters; ②isotopic geochemistry, including Sr-Nd and Lu-Hf isotopes; ③Multi-dating, including low-temperature thermochronology such as (U-Th)/He (AHe)and Fission Track (AFT) dating, and high-temperature thermochronology such as U-Pb dating. Based on an integrated analysis using these methods, we can get various and comprehensive geological information such as the rock type, formation conditions and evolution of source rocks, the history of uplift and exhumation of source areas and even the subsidence history of sedimentary basins. Although the low-temperature thermochronology of detrital apatite is widely used in sedimentary provenance analysis, the elemental and isotopic geochemistry, as well as the U-Pb dating, remains to be developed. These approaches are supposed to have wide application prospects in several research areas such as tectonics, sedimentary geology basin analysis and even paleoclimatology.  相似文献   

8.
Variations in the F, Cl and OH contents of apatite are not constrained by crystal-chemical factors (in contrast to micas and amphiboles), and thus changes in the abundance of these components provide an indicator of halogen fugacity variations and insights into the degassing history of igneous rocks. Microprobe analysis of intercumulus apatites from the Stillwater Complex reveal that Cl-rich apatites, typically containing <0.4 wt % F and >6.0 wt % Cl, occur throughout the lower 1/3 of the complex excluding the Basal series. A change from Cl-rich to more F-rich apatite occurs within olivine-bearing zone I (OB I) of the Banded series, the host zone of the platiniferous J-M Reef. Although apatite compositions are somewhat variable above the J-M Reef, more F-rich apatites predominante and typically contain >1.2 wt % F and <3.0 wt % Cl. The most F-rich apatites occur in the uppermost exposed cumulates. Pristine apatites from coeval sills and dikes from below the complex and from the Basal series are similarly F-rich. In all apatites, the Cl and F contents are lower in rocks affected by later metamorphic fluids. Rare earth element (REE) concentrations in chlorapatites show a marked peak in the olivine-rich rocks of the J-M Reef, and contain up to 2 wt % Ce2O3 + La2O3. The trend of first increasing, then decreasing Cl/F ratios with stratigraphic height is modeled by a vapor-driven zone refining process occurring within the cumulate pile causing Cl-enrichment in the interstitial melt accompanied by degassing at the top of the magma chamber causing overall loss of Cl from the magma as crystallization proceeded. The abrupt change from Cl-rich to more F-rich apatites within OB I is interpreted as the result of a breakdown of the Cl-rich zone refining front and mixing with Cl-poor supernatant melt. Any high temperature fluids that exsolved and circulated through the lower 1/3 of the complex must have been enriched in Cl and could have transported REE and trace metals.  相似文献   

9.
The oxygen (δ18Oc) and carbon (δ13Cc) isotope compositions of the structural carbonate group (CO3) in apatites from lateritic profiles were investigated. The weathering profiles, located in southern Brazil and in western Senegal, are developed on three different types of apatite-rich parent rock: carbonatite, metamorphosed marine phosphorite and sedimentary marine phosphorite. The parent rock apatites are of magmatic, hydrothermal, metamorphic and sedimentary origins. The in situ formation of apatite of weathering origin in the profiles is well documented petrographically and geochemically.The overall range of measured δ18Oc and δ13Cc values of apatites of weathering origin (22 to 27 SMOW for δ18Oc and −15 to −10 PDB for δ13Cc) is much smaller than the range of measured and/or published isotope compositions of parent rock apatites (4–35 for δ18Oc and −11 to +1 for δ13Cc). In any profile, the apatites of weathering origin can exhibit lower, similar or higher δ18Oc values than parent rock apatites. In contrast, their δ13Cc values are systematically and significantly lower than those of the parent rock apatites. Apatites formed as a result of weathering in laterites can therefore be readily distinguished from apatites of other origin on the basis of their isotope composition.Assuming that apatite CO3 fractionates O in a way similar to calcite CO3, the structural carbonate group of the apatites of weathering origin appears to form in approximate isotopic equilibrium with the weathering solutions. The very low δ13Cc values exhibited by these apatites indicate that the dominant sources of dissolved CO2 in the soil water are organic. The isotope composition of structural carbonate in apatite of weathering origin in lateritic profiles may provide useful information for paleoenvironmental studies.  相似文献   

10.
通过岩心、录井、铸体薄片以及扫描电镜等分析手段,对准噶尔盆地石西地区侏罗系八道湾组储层进行分析,认为研究区储层以细粒沉积为主,岩石类型以长石岩屑砂岩、岩屑砂岩为主;储集空间主要由原生粒间孔、粒间溶孔、粒内溶孔和微裂缝组成,属于中低孔、中低渗储层。同时探讨了石西地区侏罗系八道湾组储层的主控因素,结果表明,岩性是优质储层形成的物质基础;沉积相是控制优质储层发育的主导因素;成岩作用和早期油气充注控制着储层孔隙的发育程度。研究区有利储层主要分布于八一段(J_1b~1)和八三段(J_1b~3)的辫状河扇三角洲前缘水下分流河道中。  相似文献   

11.
Initial 87Sr/86Sr ratios, major and trace element compositions have been determined for the Paleogene granitic rocks in the Tsukuba district, Japan. Isotopic ages strongly suggest that the granitic rocks (seven units) were continuously emplaced and solidified during a short time interval. Initial 87Sr/86Sr ratios for seven granitic units vary from 0.7082 to 0.7132, while sedimentary and metasedimentary country rocks have ratios at the time of granitic magma emplacement ranging from 0.7149 to 0.7298. Continuous linear arrays for the granitic rocks in the diagrams of initial 87Sr/86Sr ratios versus some chemical parameters can be explained by either of following two processes. One is the assimilation — fractional crystallization (AFC) process between the parental magma (SiO2 of 68% and initial ratio of 0.7078) and sedimentary country rocks, and the other is magma mixing process between above parental magma and sediment derived acidic magma (melt) (SiO2 of 75%). The high initial ratios (0.7078–0.7098) for basic rocks such as gabbro or diorite in the Tsukuba district and the similar characteristics observed in the rocks of Ryoke belt (SW Japan) suggest that the parental magma had the same source region as the basic rocks, probably the lower crustal source.  相似文献   

12.
Over 700 apatite grains from a range of rock types have been analysed by laser-ablation microprobe ICPMS for 28 trace elements, to investigate the potential usefulness of apatite as an indicator mineral in mineral exploration. Apatites derived from different rock types have distinctive absolute and relative abundances of many trace elements (including rare-earth elements (REE), Sr, Y, Mn, Th), and chondrite-normalised trace-element patterns. The slope of chondrite-normalised REE patterns varies systematically from ultramafic through mafic/intermediate to highly fractionated granitoid rock types. (Ce/Yb)cn is very high in apatites from carbonatites and mantle-derived lherzolites (over 100 and over 200, respectively), while (Ce/Yb)cn values in apatites from granitic pegmatites are generally less than 1, reflecting both HREE enrichment and LREE depletion. Within a large suite of apatites from granitoid rocks, chemical composition is closely related to both the degree of fractionation and the oxidation state of the magma, two important parameters in determining the mineral potential of the magmatic system. Apatite can accept high levels of transition and chalcophile elements and As, making it feasible to recognise apatite associated with specific types of mineralisation. Multivariate statistical analysis has provided a user-friendly scheme to distinguish apatites from different rock types, based on contents of Sr, Y, Mn and total REE, the degree of LREE enrichment and the size of the Eu anomaly. The scheme can be used for the recognition of apatites from specific rock types or styles of mineralisation, so that the provenance of apatite grains in heavy mineral concentrates can be determined and used in geochemical exploration.  相似文献   

13.
The Tm/Ts index as the ratio of two isomeric peaks of C27H46 trinorhopane in the m/e 191 fragmentogram is one of the important molecular parameters for petroleum geochemistry, which has found wide application in identifying the degree of maturation of organic matter in China. It has been observed that theT m/Ts index not only depends on the burial depth and temperature with respect to terrestrial crude oils and source rocks (i.e., it decreases with increasing burial depth and temperature), but also on the type of organic matter and sedimentary facies. So the application of the index indicative of maturation of organic matter is conditional.  相似文献   

14.
海拉尔盆地乌尔逊-贝尔凹陷下白垩统发育火山熔岩-正常碎屑沉积岩之间的过渡岩石类型,其成岩作用类型与正常沉积岩相比具有特殊性.采用显微镜下描述与扫描电镜分析相结合的方法对研究区成岩作用类型进行了研究,并总结出成岩作用序列.结果显示火山碎屑岩的成岩作用类型包括熔结作用、机械渗滤作用、压实作用、脱玻化作用、重结晶作用、胶结作用、自生矿物转化和溶蚀溶解作用.其中,熔结作用、脱玻化作用以及凝灰质的溶蚀溶解作用是火山碎屑岩所特有的成岩作用类型.研究区具有成因联系的成岩共生组合主要有4类,分别是:(1)微晶石英和微晶方解石;(2)石英的溶解与结晶;(3)自生白云母、蒙皂石、伊利石和绿泥石;(4)沸石与自生长石.成岩序列可以分为熔结作用阶段、机械渗滤作用阶段、脱玻化作用阶段、凝灰质溶蚀溶解作用阶段、粘土矿物混层阶段、自生白云母阶段、沸石胶结阶段、颗粒强烈胶结阶段以及铁白云发育阶段.研究区下白垩统处于早成岩B期至晚成岩B期,主要为晚成岩A期.   相似文献   

15.
本文对湘东湘乡-醴陵地区和湘东南桂阳地区的新元古代浅变质沉积岩进行了岩石地球化学研究和锆石U-Pb定年及锆石Lu-Hf同位素分析。研究显示两个地区的碎屑沉积岩具有相似的中等的成分成熟度,但大的K2O/Na2O变化指示不同沉积岩经历了不同程度的风化淋滤作用。两个地区多数样品的稀土分配模式与澳大利亚后太古代页岩(PAAS)的稀土分配模式相似,但总体具有更高的含量,尤其是重稀土。湘东地区板溪群沉积岩含有更高的相容元素(如Sc, Cr, Ni),说明源区具有更多的中基性组分,而湘东南震旦纪沉积岩主要由再循环物质组成。碎屑锆石U-Pb定年结果表明湘东新元古代沉积岩中含有大量850~800Ma的碎屑锆石,而缺少1000Ma左右的碎屑锆石,显示了与扬子地块的亲缘性。而湘东南新元古代沉积岩中含有丰富的Grenville期和一定数量的~2.5Ga的碎屑锆石,相似于华夏地块物质组成。表明扬子地块和华夏地块在西南地区的分界线很可能就从湘东的湘乡-醴陵地区和湘东南的桂阳地区之间通过。前人对华南早古生代沉积岩中碎屑锆石的年代学研究显示湘东和湘东南地区的早古生代沉积岩的物质组成均相似于华夏地块,指示它们的源区是东南的华夏地块。因此,从新元古代到早古生代,湘东地区的沉积物源区发生了重大改变,暗示在新元古代晚期(震旦纪)与早古生代(中寒武世)之间发生过一次构造运动,使华夏地块逐渐隆起或使湘东-湘西盆地进一步沉陷,从而使湘乡-醴陵地区从早古生代开始接受了来自华夏地块的碎屑物质。这期构造运动可能与泛非构造事件相关。  相似文献   

16.
The normative mineral composition of protolith for high-alumina gneisses in the Chupa Formation of the Belomorian Group (Baltic Shield) is presented. Based on protolith composition, index of maturity or chemical index of alteration (CIA), localization of data points of gneisses on discriminant diagrams, and several index ratios, it is suggested that the protolith of the studied rocks was composed of low-mature sediments (graywackes). The material delivered to the sedimentary paleobasin was derived from ultramafic, mafic, and intermediate rocks. Correlation between some elements (Rb versus K2O, Ti and Ga versus Al, and Sr versus smectitic clay and plagioclase), typical of Phanerozoic sedimentary rocks, is also revealed in the studied gneisses.  相似文献   

17.
高温高压下黄铁矿热力学性质的第一性原理研究   总被引:1,自引:0,他引:1  
刘善琪  李永兵  石耀霖 《岩石学报》2018,34(6):1813-1818
黄铁矿是自然界中分布最为广泛的硫化物矿物,同时也是重要的造矿矿物,在金属矿床、沉积岩、变质岩、花岗岩、基性-超基性岩浆岩、以及地幔岩中都有大量出现。因此,研究黄铁矿在不同温度压力下的热力学性质可以为深入探讨与黄铁矿有关的成岩、成矿、成藏问题提供有用的矿物学依据。本文利用基于密度泛函微扰理论的第一性原理方法,采用准谐近似计算了黄铁矿在高温高压下的热力学性质。我们计算的黄铁矿的晶格常数、零压下的体积模量及其对压力的导数与前人的实验及理论计算结果吻合得很好,零压下等压热容和熵随温度的变化与实验结果有很好的一致性。尤其是,本文计算了直至2500K、100GPa的高温高压下黄铁矿的等温体积模量、热膨胀系数、热容和熵等热力学性质。这为在有硫参与的情况下,人们开展下地壳-岩石圈地幔深度的地球动力学模拟和建立地球物理模型提供了有用的信息。  相似文献   

18.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

19.
Two distinct groups of granitoids occur on the eastern side of the Kosciusko Batholith. Those considered to be derivatives of sedimentary source rocks (S‐types) are usually foliated and either contain cordierite or white‐mica secondary after cordierite. The granitoids produced from igneous source material (I‐types) are generally massive and frequently contain hornblende. Geochemical parameters provide the best discriminant between the two groups, I‐types have higher Ca, Al, Na2O/K2O, and Fe2O3/FeO, and lower Fe, Mg, Sc, V, Cr, Co, Ni, Cu, Zn, Ba, Rb, Th, La, Ce, and Y than S‐types of comparable SiO2 values.

The differences between the two groups are not the result of differences in the melt‐forming process but reflect differences in the nature of the source material. Thus the geochemical features of the S‐type granitoids are indicative of their source rocks having been through a process of chemical weathering in a sedimentary cycle. Conversely, the I‐type granitoids were derived from fractionated rocks that had not been involved in weathering processes.  相似文献   

20.
Fatty acids isolated in sedimentary black barite (BaSO4) from Arkansas and Nevada were identified by gas chromatography-mass spectroscopy. The dominant or major fatty acids found in these beds of barite are C16:0, C18:0, and C18:1. The occurrence and distribution of these acids in this type of rock may serve as “molecular fingerprints” of microbial biogeochemical processes. The organic matter and associated microorganisms are shown to be trapped within the finely crystalline barite, thus forming a closed system for microbial diagenesis.Important differences that occur in the distribution of the lesser or minor fatty acids probably result from: (1) the nature of the progenitor organic detritus in the environment of barite deposition: and (2) the subsequent degree of microbiological alteration of the parent organic debris swept into and trapped in the depositional environment.Three general models of sedimentary environments are proposed in which anoxic conditions may prevail and where barium sulfate (BaSO4) may precipitate: (1) in a silled basin with semi-restricted circulation; (2) on an outer continental shelf where the slope is encroached upon by water of the oxygen minimum layer; (3) on a low-energy, inner shelf or semi-restricted embayment impinged by a wedge of anoxic water.The major geochemical and geological parameters which are believed to be the significant factors controlling the formation and high grade of these organic-rich, black bedded barites are: (1) a unique source of barium-rich fluid that only contains trace amounts of other elements; (2) the presence of an anoxic bottom environment within the depositional basin; (3) a reflux source of sulfate ion; (4) an adequate source of organic matter.The results of this study may serve as guidelines for future exploration in similar, untested sedimentary basins, especially those with rocks of middle Paleozoic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号