首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of 3-μm spectroscopy towards the nucleus of a nearby Seyfert 2 galaxy, NGC 5506. A weak absorption feature of carbonaceous dust is detected at ∼3.4 μm. The optical depth ratio of the 3.4-μm carbonaceous dust absorption to the 9.7-μm silicate dust absorption is smaller by more than a factor of 2 than that in the interstellar medium in our Galaxy. The small ratio is consistent with the idea that the obscuration towards the nucleus of NGC 5506 is caused mainly by dust grains in its host galaxy (type S0/a) and that the contribution of carbonaceous dust grains to the visual extinction there is smaller than that in our Galaxy (type Sb/bc).  相似文献   

2.
The composition of the interstellar silicate dust is investigated. Condensation or alteration of silicate grains at temperatures of a few hundred degrees, in the presence of H2O, would result in hydrous or phyllosilicates, the silicate type most abundant in the type I carbonaceous chondrites. Infrared spectra of small particles (~0.1 μ) of the high temperature condensates, olivine and pyroxene, at 300 K and 4 K do not give a good match to the interstellar absorption band near 9.8 μ. Laboratory spectra of several phyllosilicates give better agreement as does the spectrum of a carbonaceous chondrite. We propose that the silicates in the interstellar grains are predominantly phyllosilicates and suggest additional spectral tests for this hypothesis.  相似文献   

3.
The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,th...  相似文献   

4.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   

5.
The available literature on sources, chemical composition, and importance of dust particles for the origins of life is analyzed. The most abundant sources of dust on the early terrestrial planets are sedimentation of interplanetary dust, meteoritic/cometary impacts, and volcanic eruptions. Interplanetary dust can originate directly from interstellar space, from evaporation of cometary bodies, from collisional destruction of asteroidal and meteoritic bodies, and nucleation in sunspots. Many rather complex organic species, including those of prebiotic interest, have been identified in the interstellar medium and cometary dust. Some of them are believed to formvia catalytic processes on the surfaces of dust particles. However, the mechanisms are not known, and even simulating experiments are difficult to perform due to insufficient knowledge of physical conditions in the space media and of chemical composition and properties of the dust. Besides the catalytic roles, cometary dust is believed to be the best delivery vehicle for organic matter of space origin to the atmospheres of terrestrial planets. Abundant sources of catalytically active fine dust can be volcanoes. Various organic and biological compounds have been found in terrestrial volcanic gases and ash, which are assumed to formvia the catalytic Fischer-Tropsch reactions. At present the eruptions on the Earth provide a unique opportunity to observein situ the formation of organic matter, and knowledge of the ash composition and local conditions allows to perform simulating experiments.  相似文献   

6.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

7.
Astrophysical and cosmochemical data show that many kinds of hydrocarbons are widespread in space, including giant molecular clouds, diffuse interstellar medium, comets, interplanetary dust particles, and carbonaceous meteorites. Here an effort is made to show the close relation between high-molecular weight hydrocarbons observed in space and existing on Earth. Results of astrochemical modelling of dust grains in dense collapsing cores of giant molecular clouds are also presented. They show that about 10% of the total abundance of dust grains may be the result of aliphatic hydrocarbons. This dust serves as initial material for comets, formed in protosolar nebula. The problem of survival of cometary organics during impact onto the Earth is discussed, and it is shown that the so-called soft-landing comet hypothesis may explain the accumulation of complex hydrocarbons on the Earth's surface. We conclude that a significant fraction of terrestrial prebiotic petroleum was delivered by extraterrestrial matter.  相似文献   

8.
Summary Cosmic dust grains play an important role for the thermal, dynamical, and chemical structure of the interstellar medium. This is especially true for the star formation process and the late stages of stellar evolution. Dust grains determine the spectral appearance of protostars, very young stellar objects with disk-like structures as well as of evolved stars with circumstellar envelopes.In this review, we will demonstrate that solid particles in interstellar space are both agent and subject of galactic evolution. We will especially discuss the different dust populations in circumstellar envelopes, the diffuse interstellar medium, and the molecular clouds with strong emphasis on the evolutionary aspects and the metamorphosis of these populations.  相似文献   

9.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

10.
From the data on bright stars of different spectral and luminosity classes from the 13-color photometry catalog, the selective extinction of light by the interstellar dust has been studied. The stars from the 1000-pc vicinity of the Sun were investigated. In the optical spectral range, the interstellar extinction curves show systematic deviations from the “λ?1” law, which allows one to sort them into three types. The observed curves of the interstellar dust extinction were compared with the theoretical curves calculated from the reflectance spectra of the asteroids under the approximation of the Rayleigh particles. The calculated extinction curves for the surface material of D-type asteroids and the Tagish Lake carbonaceous chondrite agree rather well with the observed curves of the interstellar extinction of the first type.  相似文献   

11.
We give an elementary model for the evolution of dust in galaxies, based on abundance arguments. The model takes account of grain core production in both supernovae and giant stars, and includes mantle growth in the interstellar medium. Destruction of grain cores does not appear to be a dominant effect. We show that a self-consistent picture can be made in which the interstellar dust mass is an approximately constant fraction of the heavy element mass in the interstellar medium. This result is demonstrated to be essentially independent of outflow or inflow of interstellar material.  相似文献   

12.
We perform numerical simulations of the molecular hydrogen production on the surface of interstellar dust grains and its dissociation by the ultraviolet background in conditions typical for the interstellar medium. The kinetic version of the Monte Carlo method is used for the modeling of the catalytic chemical reactions on the surface of the dust fraction and in the surrounding medium. Our simulations show the importance of the interstellar dust particles for hydrogen chemistry in diffuse molecular clouds.  相似文献   

13.
Kimura  H.  Mann  I.  Wehry  A. 《Astrophysics and Space Science》1998,264(1-4):213-218
We deduce the mass distribution and total mass density of interstellar dust streaming into the solar system and compare the results to the conditions of the very local interstellar medium (VLISM). The mass distribution derived from in situ measurements shows a gentler slope and includes larger grains, compared to a model distribution proposed for the wavelength dependence of the interstellar extinction. The mass density of grains in the solar system is consistent with that expected from measurements of the visible interstellar extinction and the abundance constraints of elements in the diffuse interstellar medium (ISM), instead of those in the VLISM. This may imply that interstellar dust grains are not associated with the VLISM and that the conditions of the grains are better represented by the ones expected in the diffuse ISM. If this is the case, then the flatter slope in the mass distribution and the detection of larger interstellar grains in the solar system may even indicate that coagulation growth of dust in the diffuse ISM is more effective than previously inferred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A substantial fraction of interstellar dust probably formed in the nebulae around protostars, a setting similar to that envisioned for meteoritic material. From studies of the mineralogy and composition of meteorites it is possible to obtain quantitative information on the conditions that prevailed in the nebula. For example, pressures in the range 10–3 to 10–6 atm are indicated. At these pressures the kinetics of nucleation and grain growth are favorable.The fact that the gas associated with interstellar dust has solar H/S ratios indicates that FeS, which forms at 680 K, independent of pressure, is not present in the dust. Since iron only becomes oxidized at even lower temperatures, also via pressure-independent reactions, oxidized iron is not expected in the dust. If most interstellar dust forms in nebulae and is ejected back into space, a relatively high temperature is implied, 700K. Dust formation around stars with high C/O ratios is expected to produce minerals found in the highly reduced enstatite chondrites.High-temperature fractionation processes ( 1000 K) played an important role in the nebula. Much of the Al, Ca, Ti, etc., evidently condensed and accreted into cm-sized objects, some of which are found in carbonaceous chondrites. These objects are explicable in terms of formation from a cooling neutral gas with cosmic composition. Their most important distinguishing characteristics are low volatile and low Si contents, coupled with high refractory element contents constrains formation via isothermal compression to grain temperature 1000 K.Invited contribution to the proceedings of a workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

15.
《Planetary and Space Science》1999,47(6-7):787-795
The infrared emission of various comets can be matched within the framework that all comets are made of aggregated interstellar dust. This is demonstrated by comparing results on Halley (a periodic comet), Borrelly (a Jupiter family short period comet), Hale-Bopp (a long period comet), and extra-solar comets in the β Pictoris disk. Attempts have been made to generalize the chemical composition of comet nuclei based on the observation of cometary dust and volatiles and the interstellar dust model. Finally, we deduce some of the expected dust and surface properties of comet Wirtanen from the interstellar dust model as applied to other comets.  相似文献   

16.
The results of 3–4-μm spectroscopy towards the nuclei of NGC 3094, 7172, and 7479 are reported. In ground-based 8–13-μm spectra, all the sources have strong absorption-like features at ∼10 μm, but they do not have detectable polycyclic aromatic hydrocarbon (PAH) emission features. The 3.4-μm carbonaceous dust absorption features are detected towards all nuclei. NGC 3094 shows a detectable 3.3-μm PAH emission feature, while NGC 7172 and 7479 do not. Nuclear emission whose spectrum shows dust absorption features but no PAH emission features, is thought to be dominated by highly obscured active galactic nuclei (AGNs) activity. For NGC 7172, 7479, and three other such nuclei in the literature, we investigate the optical depth ratios between the 3.4-μm carbonaceous dust and 9.7-μm silicate dust absorption     The     ratios towards three highly obscured AGNs with face-on host galaxies are systematically larger than the ratios in the Galactic diffuse interstellar medium or the ratios for two highly obscured AGNs with edge-on host galaxies. We suggest that the larger ratios can be explained if the obscuring dust is so close to the central AGNs that a temperature gradient occurs in it. If this idea is correct, our results may provide spectroscopic evidence for the presence of the putative 'dusty tori' in the close vicinity of AGNs.  相似文献   

17.
Henning  Th.  Schnaiter  M. 《Earth, Moon, and Planets》1998,80(1-3):179-207
In this review, the nature of carbon-containing molecules and carbonaceous solids present in meteorites, comets, and the interstellar medium is discussed. Carbon plays an active role in the lifecycle of stars and the interstellar medium. It is the basis of a rich interstellar chemistry and the main component of pre-biotic organic material in space. The aim of the review is to build a bridge between astronomical spectroscopy and laboratory studies relevant to the investigation of cosmic carbon. Special emphasis is given to the structural variety of carbon-containing species and their characterization by experimental techniques. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The main topic of long-term researches by G.A. Shajn is the nature of diffuse matter, its distribution in the Galaxy and extragalactic systems, interaction with the interstellar medium and hot stars,and the formation of emission and reflection nebulae and stars. Based on the analysis of experimental data, mainly photographic observations of nebulae in the Milky Way and extragalactic systems, he made conclusions and suggested well-founded hypotheses on a wide range of considered problems, including those related to cosmogony. The structure of nebulae, and their masses and sizes give reasons behind the conclusion that most of them are formed not in the process of ejection of matter from the stars, but rather they are objects which are born and evolve, and quite often are comprised of giant conglomerates of gas, dust and stars. The distribution of OB-type stars and nebulae in spiral branches points to their genetic relation and the fundamental role of the interstellar medium as the source of their formation. The structural features of nebulae are determined by the action of magnetohydrodynamic forces. Magnetic fields in a galaxy control the motion of diffuse gas-dust matter and ensure the maintenance of its spiral structure. These ideas continue being developed in modern directions of astrophysics.  相似文献   

19.
Suprathermal dust grains as suggested by Wickramasinghe produce electrons of energies not higher than 20 eV by Coulomb collisions with free electrons in an interstellar medium. These electrons are responsible for the production of singly ionized ions but not effective for that of highly ionized ones. This explains a general feature of the composition of atoms and ions as observed from the Copernicus satellite.  相似文献   

20.
The influence of crystal structure and surface stresses on the spectrum of small interstellar particles has been investigated. Surface effects are predicted to result in the occurrence of pairs of features in the discrete absorption spectrum of interstellar dust. A simple relationship between the energy separation between lines of these pairs and their widths is derived which is tested against recent observational data on the diffuse interstellar band spectrum. Thirty of the diffuse bands can be accounted for on this basis by assuming that interstellar dust consists of a mixture of components of differing chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号