首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluvial ribbon sandstone bodies are ubiquitous in the Ebro Basin in North‐eastern Spain; their internal organization and the mechanics of deposition are as yet insufficiently known. A quarrying operation in an Oligocene fluvial ribbon sandstone body in the southern Ebro Basin allowed for a three‐dimensional reconstruction of the sedimentary architecture of the deposit. The sandstone is largely a medium‐grained to coarse‐grained, moderately sorted lithic arenite. In cross‐section, the sandstone body is 7 m thick, occupies a 5 m deep incision and wedges out laterally, forming a ‘wing’ that intercalates with horizontal floodplain deposits in the overbank region. Three architectural units were distinguished. The lowest and highest units (Units A and C) mostly consist of medium‐grained to coarse‐grained sandstone with medium‐scale trough cross‐bedding and large‐scale inclined stratasets. Each of Units A and C comprises a fining‐up stratal sequence reflecting deposition during one flood event. The middle unit (Unit B) consists of thinly bedded, fine‐grained sandstone/mudstone couplets and represents a time period when the channel was occupied by low‐discharge flows. The adjoining ‘wing’ consists of fine‐grained sandstone beds, with mudstone interlayers, correlative to strata in Units A and C in the main body of the ribbon sandstone. In plan view, the ribbon sandstone comprises an upstream bend and a downstream straight reach. In the upstream bend, large‐scale inclined stratasets up to 3 m in thickness represent four bank‐attached lateral channel bars, two in each of Units A and C. The lateral bars migrated downflow and did not develop into point bars. In the straight downstream reach, a tabular cross‐set in Unit A represents a mid‐channel transverse bar. In Unit C, a very coarse‐grained, unstratified interval is interpreted as deposited in a riffle zone, and gives way downstream to a large mid‐channel bar. The relatively simple architecture of these bars suggests that they developed as unit bars. Channel margin‐derived slump blocks cover the upper bar. The youngest deposit is fine‐grained sandstone and mudstone that accumulated immediately before avulsion and channel abandonment. Deposition of the studied sandstone body reflects transport‐limited sediment discharges, possibly attaining transient hyperconcentrated conditions.  相似文献   

2.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

3.
古洪水事件重建是地貌学与环境变化领域的前沿性课题之一.高山峡谷基岩河段是古洪水重建的理想场所,通过系统梳理国内外文献,评述古洪水事件重建研究进展,认为识别古水位标志(palaeo-stage indicators)、系统建立流域尺度洪水综合地貌证据是古洪水重建的前提和基础.而不同类型的古洪水地貌证据中,古洪水滞流沉积物...  相似文献   

4.
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre‐scale bars vary within a multi‐kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre‐scale bars from the Río Paraná, Argentina. The investigated bars are located between 30 km upstream and 540 km downstream of the Río Paraná – Río Paraguay confluence, where a significant volume of fine‐grained suspended sediment is introduced into the network. Bar‐scale cross‐stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar‐scale sets are found on top of finer‐grained ripple‐laminated bar‐trough deposits. Bar‐scale sets make up as much as 58% of the volume of the deposits in small, incipient mid‐channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small‐scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large‐scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Río Paraguay. Relative to other controls on downstream fining, the tributary input of fine‐grained suspended material from the Río Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5 m of mid‐channel bars shows: (i) an increase in the abundance and thickness (up to metre‐scale) of laterally extensive (hundreds of metres) fine‐grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar‐trough deposits and a corresponding decrease in bar‐scale cross‐strata (<10%). The thalweg deposits of the Río Paraná are composed of dune sets, even directly downstream from the Río Paraguay where the upper channel deposits are dominantly fine‐grained. Thus, the change in sedimentary facies due to a tributary point‐source of fine‐grained sediment is primarily expressed in the composition of the upper bar deposits.  相似文献   

5.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

6.
The beach‐bar reservoir play has become an important exploration target within the Bohai Bay Basin, especially in the Boxing Sag within the Dongying Depression, where a large‐scale lacustrine beach‐bar oil pool has been discovered recently. The sedimentary characteristics, distribution patterns and formation mechanisms of beach‐bar sand bodies in the upper fourth member of the Eocene Shahejie Formation (Es4s) in the Boxing Sag were studied in detail based on seismic, well log data and core data. The Es4s in the Boxing Sag is composed of a third‐order sequence consisting of three systems tracts, i.e. a lowstand systems tract, a transgressive systems tract and a highstand systems tract. Beach‐bar sand bodies were deposited widely in the basin during the lowstand systems tract period. The sandy beach‐bars are characterized by siltstones, fine‐grained silty sandstones interbedded with thin mudstone units. The presence of well‐developed sedimentary structures, such as swash bedding, parting lineation, parallel bedding, ellipsoidal mud clasts, ripples, terrestrial plant debris and vertical burrows, suggests that beach‐bars were deposited in a relatively shallow water environment under the influence of strong hydrodynamics. Laterally, the sandy beach facies occurred as a more continuous sheet‐like body around the sandy bar in most parts of the sag. Stratigraphically, beach‐bars were distributed mainly in the lowstand systems tract and they were less well‐developed in the transgressive systems tract and highstand systems tract. Several factors were probably responsible for the occurrence of the large‐scale beach‐bars during the lowstand systems tract period, including: (i) a gentle palaeoslope and relatively weak structural activities; (ii) a shallow‐water condition with a strong hydrodynamic environment; (iii) high‐frequency oscillations of the lake level; and (iv) an abundant terrigenous clastic feeding system with multiple‐point and linear sediment sources.  相似文献   

7.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   

8.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

9.
黄河上游全新世特大洪水及其沉积特征   总被引:36,自引:7,他引:36       下载免费PDF全文
黄河上游官亭盆地的黄河二级阶地面上沉积了厚约2m左右的平流沉积物,每次洪水形成1个由红色粘 土水平层和黑灰色粘土水平层组成的洪水单元。对研究剖面洪水沉积层的磁化率测量区分出了14个洪水单元, 代表了14次特大洪水的发生;利用盆地内的考古资料,将古洪水频繁发生的时期定为3700~2800aB.P.。粒度分 析表明官亭盆地平流沉积的沉积物几乎全部由粒径小于4φ的悬移物质组成,其分选系数>2,偏度<0,峰态中等。 与黄河中游进行比较,官亭盆地的平流沉积粒级更小,偏度更小且呈负偏。  相似文献   

10.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

11.
野外地质露头为精细刻画沉积体内部结构、建立准确地下地质模型发挥着重要作用。以鄂尔多斯盆地延河剖面长7段为例,采用岩石学、野外露头沉积学方法,详细剖析了湖泊细粒沉积的岩相类型、特征、垂向组合及沉积环境。研究结果表明,延河剖面长7段发育平行层理细砂岩相、流水交错层理细砂岩相、浪成交错层理粉砂岩相、沙纹层理粉砂岩相、变形层理粉砂岩相、水平层理(泥质)粉砂岩相、块状泥岩相、水平层理(砂质)泥岩相、水平纹层页岩相9种岩相类型。在结合区域地质特征基础上,研究认为长7段为远源的曲流河三角洲前缘和浅湖-半深湖沉积,进一步细分出7类沉积单元,其中水下分支河道、支流间湾较为发育,水下天然堤、远砂坝、席状砂发育规模较小,浅湖-半深湖沉积只在长72段下部发育,河口坝基本不发育,仅局部可见。对各沉积单元的垂向分布特征进行深入研究,识别出Ⅰ、Ⅱ、Ⅲ、Ⅳ 4类垂向分布形式,其中Ⅰ、Ⅱ组合主要分布在研究区长71、长73亚段,Ⅲ、Ⅳ组合主要分布在研究区长72亚段。剖面相分析表明,长7沉积期整体为一套先变细、再变粗的细粒沉积序列,为曲流河三角洲前缘沉积—浅湖-半深湖沉积—曲流河三角洲前缘沉积。  相似文献   

12.
The sedimentary infills of subglacially eroded bedrock troughs in the Alps are underexplored archives for the timing, extent and character of Pleistocene glaciations but may contain excellent records of the Quaternary landscape evolution over several glacial–interglacial cycles. The onset of sedimentation in these bedrock troughs is often reflected by diamicts and gravels directly overlying bedrock in the deepest basin segments. Subglacial or proglacial depositional environments have been proposed for these coarse‐grained basal units but their characteristics and origin remain controversial. This article presents results from drill cores that recovered a coarse‐grained basal unit in a major buried bedrock‐trough system in the Lower Glatt Valley, northern Switzerland. The excellent core recovery allowed a detailed study combining macroscopic, microscopic and geochemical methods and gives unprecedented insights into the transition from erosion to deposition in overdeepened bedrock troughs. These results show that the basal infill comprises diamicts, interpreted as subglacial tills, separated by thin sorted interbeds, originating from subglacial cavity deposition. The stacking of these units is interpreted to represent repeated switching between a coupled and decoupled ice–bed‐interface indicating an ever‐transforming mosaic of subglacial bed conditions. Decoupling in response to high basal water pressures is probably promoted by the confined subglacial hydraulic conditions resulting from the bedrock acting as aquitards, the narrow reverse sloping outlet and a large catchment area. While stratigraphic and lithological evidence suggests that erosion and the onset of basal sedimentation occurred during the same glaciation, different scenarios for the relative timing of infilling in relation to formation and glaciation of the bedrock trough are discussed. Overlying deltaic and glaciolacustrine sediments suggest deposition during subsequent deglaciation of the bedrock trough. The basal sediment characteristics are in agreement with previous reports in hydrogeological and seismic exploration and suggest the occurrence of similar basal successions in other subglacially overdeepened basins in the Alps and elsewhere.  相似文献   

13.
Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel‐valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north‐west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three‐dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel‐valley fill. During periods of stagnation, thick ice‐proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse‐grained sediments was deposited. Ice‐distal and non‐glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice‐sheet recession determines the position of coarse‐grained depocentres, while the post‐glacial history controls the deposition of fines through a progressive infill of remnant depressions.  相似文献   

14.
The large-scale (i.e. bar-scale) structure of channel deposits of the braided, low-sinuosity Calamus River, Nebraska, is described using ground-penetrating radar (GPR) profiles combined with vibracores. Basal erosion surfaces are generally overlain by medium-scale, trough-cross-stratified (sets 3–25 cm thick), very coarse to medium sands, that are associated with relatively high amplitude, discontinuous GPR reflectors. Overlying deposits are bioturbated, small-scale cross-stratified (sets <3 cm thick) and vegetation-rich, fine to very-fine sands, that are associated with low-amplitude discontinuous reflectors. Near-surface peat and turf have no associated GPR reflectors. In along-stream profiles through braid and point bars, most GPR reflectors dip downstream at up to 2° relative to the basal erosion surface, but some reflectors in the upstream parts of bars are parallel to the basal erosion surface or dip upstream. In cross-stream profiles through bars, GPR reflectors are either approximately parallel to bar surfaces or have low-angle inclinations (up to 6°) towards cut banks of adjacent curved channels. Basal erosion surfaces become deeper towards cut banks of curved channels. These structures can be explained by lateral and downstream growth of bars combined with vertical accretion. Convex upwards forms up to 0·5 m high, several metres across and tens of metres long represent episodic accretion of unit bars (scroll bars and bar heads). Stratal patterns in channel fills record a complicated history of erosion and deposition during filling, including migration of relatively small bars. A revised facies model for this type of sandy, braided river has been constructed based on this new information on large-scale bedding structure.  相似文献   

15.
泾河下游古洪水滞流沉积物地球化学特征研究   总被引:1,自引:0,他引:1  
通过沿泾河河谷广泛的野外考察,在高陵县杨官寨段发现典型的全新世黄土-土壤剖面。经过详细观测、系统采样和化学元素、粒度成分和磁化率等多指标测定,从剖面鉴别出两组古洪水滞流沉积层(SWD),分别记录了发生在4 200 ~ 4 000 a B.P.和3200 ~ 2800 a B.P.期间的特大洪水事件。该研究着重对古洪水滞流沉积层与黄土层和古土壤层的元素地球化学特征进行对比研究。结果表明:(1)在风成沉积物中,Fe2O3、Al2O3、K2O、MgO等元素含量在古土壤层高于黄土层,而CaO和Na2O元素含量则表现出相反的变化。表明风化成壤过程中,这些元素的迁移变化受到全新世以来气候变化和成壤作用的影响。而Zr、Hf、Ti、Cr、Y、Th等微量元素含量与地壳平均丰度相当,且变化甚微。这是由于这些微量元素主要包含在粗颗粒和重矿物之中,其化学性质比较稳定,具有强抗风化性,很少受到风化成壤作用的影响。(2)单个古洪水滞流沉积层,是洪水悬移质泥沙在高水位滞流环境中沉积形成的,分选性很好,故其底部多粗颗粒和重矿物沉积,Zr、Hf、Ti、Cr、Y、Th等微量元素含量呈现突出的尖峰;自下向上随着颗粒逐渐变细,粘粒成分增加,Fe2O3、Al2O3、K2O、MgO等元素含量出现高峰。这两类元素由下向上的相互消长关系,与沙级颗粒含量和磁化率值变化规律对应,反映出古洪水滞流沉积层的基本理化特性。这个研究成果对于完善古洪水沉积学和水文学的方法和理论具有重要的科学价值。  相似文献   

16.
Abstract The Panther Tongue of the Star Point Formation in central Utah contains a variety of transgressive lag deposits that, when mapped regionally, show a sensitive dependence upon pre‐existing topography of the palaeoshoreline. The Panther Tongue consists of a coarsening‐upward sandstone wedge that prograded into the Western Interior Seaway during Late Cretaceous (Santonian) time. High‐resolution sequence stratigraphic analysis revealed that this member was deposited during the long‐distance (>50 km) regression and transgression of a delta into shallow‐marine environments, containing basal highstand, forced regression, lowstand and transgressive systems tracts. Based on grain size, clast composition, lateral extent and stratigraphic position, the coarse sandstones on top of the Panther Tongue were classified into four types: (1) simple; (2) dispersed; (3) oxidized; and (4) local lags. The simple lag is composed of dark grey coarse sandstone with oyster fragments and shark teeth. This lag is typically extensively bioturbated and massive. Laminated and cross‐bedded units are also common. This type of coarse sandstone is interpreted as a typical transgressive lag. The dispersed lag differs in that it contains abundant mud and commonly occurs as multiple beds in thick intervals of muddy sandstone. Mixing of bay/estuarine and shallow ‐ marine mud with simple lag sand may be responsible for deposition of this type of coarse sandstone. The oxidized lag is distinctive in its reddish colour with extensive bioturbation and is commonly overlain by a simple lag. The local lag is composed of thin‐bedded, dark grey, coarse sandstone, occurring locally between the mouth bar and distributary channel. The variation in types, grain size and bed thickness of the coarse‐grained lags was mainly controlled by antecedent topography as suggested by immediately underlying lithofacies. Relatively thick (≈30 cm) simple lags are present on top of mouth‐bar sandstones, whereas dispersed lags are common on top of the distributary channel sandstone and in bay/estuarine and shallow‐marine mudstones. Erosion of topographic highs (mouth bar) resulted in relatively thick accumulation of simple lags. In topographic low areas such as distributary channel, estuary, bay and shallow‐marine environments, fine‐grained muddy sands that were eroded from the nearby topographic highs were redeposited. Intermittent storm waves transported coarse sands both landward and seaward, forming a dispersed lag. The net effect was reworking of local topographic relief during overall transgression, forming an apparently planar transgressive surface of erosion.  相似文献   

17.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

18.
Jakobshavn Isbræ is one of the largest ice streams in the Greenland Ice Sheet, presently draining c. 6.5% of the Inland Ice. Here we present high‐resolution Chirp and Sparker sub‐bottom profiles from a seismic survey conducted just outside of the Jakobshavn Isfjord, which provides detailed insight into the glacimarine sedimentary history of the Jakobshavn ice stream during the Holocene. We observe acoustically stratified and homogeneous sediments that drape an irregular substratum and were deposited between ~10 and c. 7.6k cal a BP. The stratified lower units are interpreted as the product of ice‐proximal glacimarine sedimentation deposited rapidly when the grounded ice margin was located close to depositional basins on topographic highs. The upper acoustically homogenous units reflect suspension settling of fine‐grained material and gravitational flows that were extruded from an increasingly unstable ice margin as the ice retreated into the fjord. Proximity to the ice margin and bedrock topography were the dominant controls on sediment accumulation during deglaciation although the 8.2‐ka cooling event probably influenced the position of the ice margin at the fjord mouth. The post‐glacial sedimentary record is characterized by glacimarine and hemipelagic rainout with an increased ice‐rafted detritus fraction that records sedimentation following ice stream retreat into Jakobshavn Isfjord sometime after c. 7.8k cal a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This study describes the structure of gravel bars in Nahal Zin, an ephemeral stream in the Negev desert. The internal structure of the bars was examined along trenches and in shallow pits. Gravel sheets and unit bars form during transporting flow events in the main channel, on intra-bar channels and near bar heads. Unit bars are dominated by the Go facies. Compound bars develop from accretion around, and modification of, unit bars. Compound bars are active under the current flow regime and the average depth of the fill layer is about 35 cm. The structure of compound bars is dominated by Gm (massive), containing large amounts of sand. The second most common facies is clast-supported, openwork, and well sorted sediments of the Go (pebbles) facies. Bar formation, and the development of the range of facies evident in the bars is controlled by sediment supply, particularly the high volumes of sand-sized sediment, the passage of gravel sheets and bedforms during floods, and the lateral and vertical instability of the channel. Repeated scour and fill events have produced a diverse arrangement of facies, with numerous erosional contacts between depositional units. Lateral and downstream shifts in the pattern of scour and fill due to flow and antecedent conditions shape the channel morphology and bar internal structure. Ephemeral river bars differ from those of humid and proglacial rivers in terms of the dominant facies present, the arrangement of the facies within the bars, and the sedimentary structures developed within the depositional units and on the bar surface.  相似文献   

20.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号