首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eighty-nine basaltic lava flows from the northwest wall of Haleakala caldera preserve a concatenated paleomagnetic record of portions of the Matuyama-Brunhes (M-B) reversal and the preceding Kamikatsura event as well as secular variation of the full-polarity reversed and normal geomagnetic field. They provide the most detailed volcanic record to date of the M-B transition. The 24 flows in the transition zone show for the first time transitional virtual geomagnetic poles (VGPs) that move from reverse to normal along the Americas, concluding with an oscillation in the Pacific Ocean to a cluster of VGPs east of New Zealand and back finally to stable polarity in the north polar region. All but one of the 16 Kamikatsura VGPs cluster in central South America. The full-polarity flows, with 40Ar/39Ar ages spanning a total of 680 kyr, pass a reversal test and give an average VGP insignificantly different from the rotation axis, with standard deviation consistent with that for other 0-5 Ma lava flows of similar latitude. Precise 40Ar/39Ar dating consisting of 31 incremental heating experiments on 12 transitional flows yields weighted mean ages of 775.6±1.9 and 900.3±4.7 ka for the M-B and Kamikatsura transitional flows, respectively. This Matuyama-Brunhes age is ∼16 kyr younger than ages for M-B flows from the Canary Islands, Tahiti and Chile that were dated using exactly the same techniques and standards, suggesting that this polarity transition may have taken considerably longer to complete and been more complex than is generally believed for reversals.  相似文献   

2.
Three sections of the Candelaria Hills volcanic sequence, west-central Nevada, appear to have recorded parts of two transitional field records or reversal excursions. Paleomagnetic data and / laser fusion sanidine age estimates for pyroclastic rocks and associated flows show that these rocks recorded the unusual field behavior at about 25.7 Ma and about 23.8 Ma. Fifteen sites yield northeast declination, moderate to shallow negative inclination mean directions and 16 sites yield west to southwest declination, moderate negative inclination directions. Both populations of site mean directions, representing a total of 12 independent eruptive units, are highly discordant to a time-averaged late Tertiary field direction, and neither can be explained by a geologically reasonable magnitude of vertical axis rotation. Virtual paleomagnetic poles (VGPs), estimated from the directional data, lie at low to intermediate latitudes; 29 of the 31 flows at intermediate latitudes (<60°), and 11 at very low latitudes (<30°). Two well-grouped VGP clusters are defined by these data with each cluster roughly corresponding to one of the age groups. Stratigraphically corrected VGPs from most of the 23.8 Ma group roughly cluster at intermediate to low latitudes at about 150°E longitude. The cluster at about 150°E corresponds to VGP clusters that have been interpreted to reflect a long lasting near-dipole configuration during several field reversals. The second stratigraphically corrected cluster lies at intermediate to low latitudes at about 80°E longitude and, notably, is defined by pyroclastic flows of the 25.7 and 23.8 Ma age groups. The VGP data at about 80°E do not fall into any previously identified preferred longitudinal band, however, they are consistent with data from some sedimentary records of reversal excursions in western North America. We recognize that the VGPs returned to a preferred location in both age populations, which we interpret as a preferred directional position, thus reflecting a potentially stable non-dipole component during a complete reversal or a reversal excursion. The observation that the VGPs maintained a preferred location during separate high amplitude events supports the hypothesis that preferred VPG clusters and thus persistent non-dipole field components can factor into the behavior of the geomagnetic field during full reversals or reversal excursions.  相似文献   

3.
Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征   总被引:13,自引:2,他引:11  
粒度分析和风化强度研究表明 ,黄土高原渭南阳郭剖面黄土层L33沉积期间成壤化作用相对较弱 .在此基础上 ,为研究极性转换期间地球磁场变化特征 ,本文对黄土层L33进行了详细的岩石磁学和古地磁学研究 ,其结果表明黄土层L33的主要载磁矿物为磁铁矿和磁赤铁矿 ,并以沉积剩磁为主 ;由逐步热退磁确定的特征剩磁 (ChRM )揭示了G M(Gauss Matuyama)极性转换过程的持续时间为 9 43± 0 64ka;在G M极性转换之前 ,地球磁场曾发生过持续时间为 2 2± 0 1 3ka的短极性漂移事件 ;相对强度研究表明 ,G M极性转换期间地球磁场强度减弱 .  相似文献   

4.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

5.
The Earth's magnetic field changed its polarity from the last reversed into today's normal state approximately 780 000 years ago. While before and after this so called Matuyama/Brunhes reversal, the Earth magnetic field was essentially an axial dipole, the details of its transitional structure are still largely unknown. Here, a Bayesian inversion method is developed to reconstruct the spherical harmonic expansion of this transitional field from paleomagnetic data. This is achieved by minimizing the total variational power at the core–mantle boundary during the transition under paleomagnetic constraints. The validity of the inversion technique is proved in two ways. First by inverting synthetic data sets from a modeled reversal. Here it is possible to reliably reconstruct the Gauss coefficients even from noisy records. Second by iteratively combining four geographically distributed high quality paleomagnetic records of the Matuyama/Brunhes reversal into a single geometric reversal scenario without assuming an a priori common age model. The obtained spatio-temporal reversal scenario successfully predicts most independent Matuyama/Brunhes transitional records. Therefore, the obtained global reconstruction based on paleomagnetic data invites to compare the inferred transitional field structure with results from numerical geodynamo models regarding the morphology of the transitional field. It is found that radial magnetic flux patches form at the equator and move polewards during the transition. Our model indicates an increase of non-dipolar energy prior to the last reversal and a non-dipolar dominance during the transition. Thus, the character and information of surface geomagnetic field records is strongly site dependent. The reconstruction also offers new answers to the question of existence of preferred longitudinal bands during the transition and to the problem of reversal duration. Different types of directional variations of the surface geomagnetic field, continuous or abrupt, are found during the transition. Two preferred longitudinal bands along the Americas and East Asia are not predicted for uniformly distributed sampling locations on the globe. Similar to geodynamo models with CMB heatflux derived from present day lower mantle heterogeneities, a preference of transitional VGPs for the Pacific hemisphere is found. The paleomagnetic duration of reversals shows not only a latitudinal, but also a longitudinal variation. Even the paleomagnetically determined age of the reversal varies significantly between different sites on the globe. The described Bayesian inversion technique can easily be applied to other high quality full vector reversal records. Also its extension to inversion of secular variation and excursion data is straightforward.  相似文献   

6.
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal–Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of 11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below 500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.  相似文献   

7.
The data that describe the long-term reversing behavior of the geodynamo show strong and sudden changes in magnetic reversal frequency. This concerns both the onset and the end of superchrons and most probably the occurrence of episodes characterized by extreme geomagnetic reversal frequency (>10–15 rev./Myr). To account for the complexity observed in geomagnetic reversal frequency evolution, we propose a simple scenario in which the geodynamo operates in three distinct reversing modes: i—a “normal” reversing mode generating geomagnetic polarity reversals according to a stationary random process, with on average a reversal rate of ~3 rev./Myr; ii—a non-reversing “superchron” mode characterizing long time intervals without reversal; iii—a hyper-active reversing mode characterized by an extreme geomagnetic reversal frequency. The transitions between the different reversing modes would be sudden, i.e., on the Myr time scale. Following previous studies, we suggest that in the past, the occurrence of these transitions has been modulated by thermal conditions at the core-mantle boundary governed by mantle dynamics. It might also be possible that they were more frequent during the Precambrian, before the nucleation of the inner core, because of a stronger influence on geodynamo activity of the thermal conditions at the core-mantle boundary.  相似文献   

8.
Two geomagnetic reversals(R→N followed by N→R) have been recorded in a sequence of Miocene marine clays of Tortonian-Messinian age in western Crete (Greece). The time span of each transition is found to be of the order of 5000–10,000 years. The transitional VGP paths are largely constrained in longitude either near the site longitude(R→N) or opposite to it(N→R). A normalized magnetization intensity record has also been obtained and its variations during reversals are found to be in excellent agreement with the predictions of Hoffman's phenomenological model.  相似文献   

9.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   

10.
The paper analyzes previously published results of studies of detailed records of geomagnetic reversals in sedimentary and volcanic sequences of the Paleozoic in the Siberian and Eastern European platforms. It is shown that the processes of geomagnetic reversals, both in the Early Paleozoic and at the end of this era, are well described by a model in which the transitional field is controlled by an equatorial dipole. During a reversal, this dipole maintained a magnetic field at the Earth’s surface whose intensity amounted to about 20% of the intensity before and after the reversal. The equatorial dipole existed before and during the reversal and was responsible for the deviation from antipodality of paleomagnetic poles of adjacent polarity chrons (the so-called reversal bias). The position of the equatorial dipole axis during the Paleozoic correlates with the supposed geometry of convective motions in the mantle at that time.  相似文献   

11.
Data on the amplitude of variations in the direction of the geomagnetic field and the frequency of reversals in the Vendian-Cambrian are presented. It has been established from these data that (a) distributions of variations in the direction of the geomagnetic field S p are bimodal (modes 9° and 11°); (b) the maximum of the average amplitude S p takes place by 5–10 Myr later than the Vendian-Cambrian boundary; (c) S p tends to increase as plume epicenters are approached; and (d) the plume formation is more often confined to intervals with different frequencies of geomagnetic reversals than to the interval of a stable state of the geomagnetic field without reversals (Vendian hyperchron). The listed features of the geomagnetic field behavior are repeated near all boundaries of geological eras of the Phanerozoic.  相似文献   

12.
Abstract

The geomagnetic field and its frequent polarity reversals are generally attributed to magnetohydrodynamic (MHD) processes in the Earth's metallic and fluid core. But it is difficult to identify convincingly any MHD timescales with that over which the reversals occur. Moreover, the geological record indicates that the intervals between the consecutive reversals have varied widely. In addition, there have been superchrons when the reversals have been frequent, and at least two, and perhaps three, 35-70 Myr long superchrons when they were almost totally absent. The evaluation of these long-term variations in the palaeogeophysical record can provide crucial constraints on theories of geomagnetism, but it has generally been limited to only the directional or polarity data. It is shown here that the correlation of the palaeogeomagnetic field strength with the field's protracted stability during a fixed polarity superchron provides such a constraint. In terms of a strong field dynamo model it leads to the speculation that the magnetic Reynolds number, and the toroidal field, increase substantially during a superchron of frequent reversals.  相似文献   

13.
We sampled the upper Cochiti polarity transition recorded in the Suva Marl in Fiji (18° S, 178° E). The Suva Marl accumulated at an average rate of 83.2 m/m.y. and provides a unique opportunity to address the question of whether present-day overprints bias the transition records. Fiji has undergone a 30° counterclockwise rotation since the deposition of the Suva Marl and hence a present day overprint onto the transitions would bias the VGPs toward the east of the site. Replicate transition records yield VGPs over both Asia and the Americas. Progressive demagnetization reveals a normal polarity overprint which was acquired prior to the rotation of Fiji, and therefore does not produce an easterly bias to the transition data even after correction for the rotation. We collected an oriented block sample across a portion of the transitional interval in the upper Cochiti reversal. Subsampling of this block into 1.0 cm thick wafers cut parallel to bedding provides considerably greater detail during the transition. These detailed data suggest that the oscillatory movement of the VGPs in these sections may be a result of the averaging caused by standard, detailed minicoring and not by the sediments or the remanence acquisition process.  相似文献   

14.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

15.
Recent studies have shown that, in addition to the role of solar variability, past climate changes may have been connected with variations in the Earth??s magnetic field elements at various timescales. An analysis of variations in geomagnetic field elements, such as field intensity, reversals, and excursions, allowed us to establish a link between climate changes at various timescales over the last millennia. Of particular interest are sharp changes in the geomagnetic field intensity and short reversals of the magnetic poles (excursions). The beginning and termination of the examined geomagnetic excursions can be attributed to periods of climate change. In this study, we analyzed the possible link between short-term geomagnetic variability (jerks) and climate change, as well as the accelerated drift of the north magnetic pole and surface temperature variations. The results do not rule out the possibility that geomagnetic field variations which modulate the cosmic ray flux could have played a major role in climate change in addition to previously induced by solar radiation.  相似文献   

16.
陕西地区单台Z/H地磁测深研究   总被引:3,自引:0,他引:3  
应用陕西地磁台网Sq资料和单台Z/H地磁测深法对陕西地区地下电导率分布进行了研究,结果表明,理想代换导体视探h约为500KM,电导率σ为0.07s/m(周期为12小时),且存在250KM和700KM深度附近的高导层,感应比例尺度实部C^1real和C^2real及内外场之比│Q^1│和│Q^2│似有11年周期变化。各台测定的结果相当接近,和其他方法测定的范围结果基本一致。用冬夏季静日均值结果较春秋  相似文献   

17.
The normal to reverse Lower Mammoth reversal (3.33 Ma) has been recorded in several sequences of lava from the Waianae Volcano, the Island of Oahu, Hawaii. 137 samples from 29 flows from the Pu'u Paheehee section have been the subject of a palaeointensity study using the microwave technique. Duplicate sister samples from the directional study of Herrero-Bervera and Valet (Earth Planet. Sci. Lett. 171 (1999) 139–148) were used. Microwave demagnetisation was carried out on all samples and the directions compared to the published flow mean directions. Microwave palaeointensity experiments were carried out on all accepted samples using the 8.2 GHz and 14 GHz microwave systems. The perpendicular applied field palaeointensity method and a Coe analogue method were used. Eighty-four samples from 24 flows gave acceptable palaeointensity results. The results indicate that the geomagnetic field was low (mean 5.9±1.3 μT (N=7)) prior to the transitional directions. During the first stage of the reversal the field remains low. Results however could only be obtained from three transitional flows. The field then strongly recovers with very high intensity (70 μT) and reversed direction. After this the intensity decreases before the field becomes transitional again for a cluster of four flows. The field does not reduce as much as previously, rather it is about twice the pre reversal intensity. For the final section of reversed flows the intensity is more than twice the pre reversal mean value, 15.1±5.9 μT (N=7). Whilst some similarities are seen between this reversal and other reversals of different ages and locations there is not enough data at present to say whether there is any systematic behaviour.  相似文献   

18.
Magnetic lineations in the Pacific Jurassic quiet zone   总被引:1,自引:0,他引:1  
Magnetic anomalies of low amplitude (<100 gammas) are present in the Jurassic magnetic quiet zone of the western Pacific Ocean. These small anomalies are lineated and can be correlated among the Phoenix, Hawaiian and Japanese lineation patterns. Thus, they represent seafloor spreading that recorded some sort of magnetic field phenomena prior to magnetic anomaly M25 at 153 m.y. B.P. The most likely possibility is that they represent a series of late Jurassic magnetic field reversals that occurred during a period of anomalously low magnetic field intensity. We propose a time scale of magnetic reversals between 153 and 158 m.y. B.P. to account for these anomalies and suggest that the dipole magnetic field intensity increased by a factor of about four from 160 to 140 m.y. B.P. in the late Jurassic.  相似文献   

19.
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous–Paleogene boundary and the termination of paleointensity bursts after the boundary of 45–40 Ma are not marked by explicit features in the geomagnetic polarity behavior.  相似文献   

20.
Four sections in Majocian-Bathonian (Middle Jurassic) pelagic limestone with standard ammonite zonation have yielded magnetic polarity sequences. Magnetic directions in these red to white limestones were obtained by thermal demagnetization and were stable from about 300°C to in excess of 450°C. The polarity patterns indicate that the majority of the Bajocian and Bathonian is characterized by quite frequent reversals of the magnetic field. Lengthy periods of constant polarity, particularly constant normal polarity, were not observed. The average frequency of reversals is about 6 per ammonite zone, which roughly may be interpreted as a frequency of a reversal every 260,000 years, a rate comparable to that of the Miocene-Pliocene. Paleolatitudes of these sites (25–28°) are about 10° south of their present positions; variable clockwise block rotations within the Subbectic region have rotated these sites relative to stable Iberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号