首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   

2.
This paper presents disk models for cataclysmic variables in which convection in the central layers has been included. The calculation of the vertical structure at different points is presented. The models have a central mass of 1M and matter fluxes of 10?9, 10?8, and 10?7 M yr?1. The corresponding luminosities are 1.86, 1.86×10 and 1.86×102 L .  相似文献   

3.
Evolutionary calculations are presented for spherically symmetric protoplanetary configurations with a homogeneous solar composition and with masses of 10?3, 1.5 × 10?3, 2.85 × 10?4, and 4.2 × 10?4M. Recent improvements in equation-of-state and opacity calculations are incorporated. Sequences start as subcondensations in the solar nebula with densities of ~10?10 to 10?11 g cm?3, evolve through a hydrostatic phase lasting 105 to 107 years, undergo dynamic collapse due to dissociation of molecular hydrogen, and regain hydrostatic equilibrium with densities ~1 g cm?3. The nature of the objects at the onset of the final phase of cooling and contraction is discussed and compared with previous calculations.  相似文献   

4.
We use the following numerical model for the collapse stage of a Type II supernova of 15 M. Our electron capture rate includes the effects of the inverse reaction and the neutron-proton mass difference. This decreases the electron density at the collapse stage and led to rather large values of the maximum inward velocity and of the corresponding mass (Umax = 3.06 × 109cm/s, Mmax=0.76 M). These larger values are more favourable for the propagation of shock after the rebounce and the triggering-off of a Type-II supernova explosion. For neutrino transport, we use a leakage model and an equilibrium diffusion model, respectively, for the thin and thick stages and a grey atmosphere model to assess the effect of neutrino precipitation on the collapse. We found this effect to be small, the energy precipitation to be not more than 10?5 the neutrino energy loss and the momentum precipitation not more than 10?6 the gravitational acceleration.  相似文献   

5.
Based on a one-dimensional hydrodynamic model, we investigate carbon burning in a thermonuclear type-Ia supernova in the approximation of unsteady convection. The relatively broad range of convective parameters, 1×10?3≤αc≤2×10?3, in which delayed detonation from the edge takes place was found to be preserved only for cases with a low boundary temperature at the presupernova stage, T b (PS) = 6.4 × 106 K, and with a high envelope mass, mex ? 2 × 10?3M. In cases with a more realistic temperature, T b (PS) = 2 × 108 K, which corresponds to helium burning in the shell source, and with a lower mass mex, delayed detonation from the edge takes place only at αc = 2 × 10?3, while at αc = 1 × 10?3, numerous model pulsations occur during t?500 s. Artificial viscosity is shown to give a determining contribution to the increase in entropy in outer model shells, which is caused by the generation of weak shock waves during pulsations. We also show that the entropies calculated by two independent methods are equal.  相似文献   

6.
This paper presents a new family of interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of charge distribution. This solution gives us wide range of parameter, K, for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a star is maximized with all degree of suitability by assuming the surface density equal to normal nuclear density, ρ nm=2.5×1017 kg?m?3. By this model we obtain the mass of the Crab pulsar, M Crab, 1.36M and radius 13.21 km, constraining the moment of inertia >?1.61×1038 kg?m2 for the conservative estimate of Crab nebula mass 2M . And M Crab=1.96M with radius R Crab=14.38 km constraining the moment of inertia >?3.04×1038 kg?m2 for the newest estimate of Crab nebula mass, 4.6M . These results are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields moments of inertia for PSR J0737-3039A and PSR J0737-3039B, I A =1.4285×1038 kg?m2 and I B =1.3647×1038 kg?m2 respectively. It has been observed that under well behaved conditions this class of solutions gives us the overall maximum gravitational mass of super dense object, M G(max)=4.7487M with radius $R_{M_{\max}}=15.24~\mathrm{km}$ , surface redshift 0.9878, charge 7.47×1020 C, and central density 4.31ρ nm.  相似文献   

7.
We analytically generalize the well-known solution of steady supersonic spherically symmetric gas accretion onto a star (Bondi 1952) for an iron atmosphere with completely degenerate electrons with an arbitrary degree of relativity. This solution is used for typical physical conditions in the vicinity of protoneutron stars produced by gravitational collapse with masses M 0=(1.4?1.8)M and over a wide range of nonzero “iron gas” densities at infinity, ρ=(104?5×106)g cm?3. Under these conditions, we determine all accretion parameters, including the accretion rate, whose value is ~(10?50)M s?1 at M 0=1.8M (it is a factor of 1.7 lower for M 0=1.4M , because the accretion rate is exactly ∝M 0 2 ). We take into account the effect of accreting-gas rotation in a quasi-one-dimensional approximation, which has generally proved to be marginal with respect to the accretion rate.  相似文献   

8.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

9.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

10.
By means of the virial theorem we derive the dependence of the mass of an oblate spheroid in solid body rotation from the velocity dispersion and the space light density. The latter is obtained from a calibrated and seeing deconvolved brightness profile as numerical and stable solution of the Abel integral equation. The application of the nucleus of M32 gives a central density of 2.1×10?5 M pc?3, a nuclear mass of 4.3×10?7 M and a mass-to-light ratio of 4.6 inV-band.  相似文献   

11.
Infrared observations of the unique symbiotic system CH Cyg in 2003–2006 are presented. Analysis of the observations has shown that a fairly dense dust structure (a cloud or a shell) appeared on the line of sight in August–November 2006. The dust grains in the new shell are similar in optical properties to graphite ones and their sizes are mostly within the range 0.14–0.16 μm. The dust shell is optically thick and its optical depth at 2.2 μm is τ(2.2) ≈ 0.97. The dust shell mass is M d(06) ≈ 8 × 10−6 M and the rate of matter flow into the shell has reached ∼2 × 10−5 M yr−1. Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 8, pp. 598–603.  相似文献   

12.
We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E (B ? V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s?1 and 9 × 1030 erg s?1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s?1 (4.76 × 10?11M yr?1) and 5 × 1013 erg s?1 (7.93 × 10?13M yr?1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.  相似文献   

13.
The impact light flash produced by electrostatically accelerated iron particles with diameters meters ranging from 5 to 0.05 μm and velocities lying between 1 km/sec and 30 km/sec has been investigated by means of photomultipliers. As target materials mainly gold and tungsten were used. The pulse of the multiplier was registered directly and after electronic integration. The pulse height of the multiplier signal, the amplitude of the integrated signal as well as its rise time were found to be unique functions of the mass and velocity of the impacting particle. For the pulse height of the differential signal the relation I = c1 × m1.25 × v5 was obtained, and for the integrated signal the relation I = c2 × m1.25 × v3.8, with only c1 and C2 depending on the target material. The rise time of the integrated signal follows the relation T = 2.2 × 102 × v?0.4 using gold as target, and in the case of tungsten material follows the relation T = 9.8 × 102 × v?1.2, where v is expressed in km/sec and T in μsec. Using the spectral distribution of the light intensity, measured by means of calibrated photomultipliers, the total amount of light energy emitted in the visible range could be calculated. As a result we obtained that for v = 4 km/sec and m = 10?11 g about 3 × 10?4 of the kinetic energy of the particle was converted into light energy. The variation of the impact flash intensity with the target material and the measured spectral distribution allowed the temperature of the crater after the impact to be estimated as between 2000 and 3000 K.  相似文献   

14.
A four-parameter model which assumes a Gaussian dependence of both temperature and pressure on distance from center is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature T M, the maximum pressure P M= 2NMkTM, the width of the pressure distribution σ P, and the width of the temperature distribution σ T = α1/2σP. The maximum temperature T M ranges from 2.2 to 2.8 × 106K, and the maximum density N M from 2 to 9 × 109cm?3. The range of σ P is from 2 to 4 × 109 cm and that of α from 2 to 7.  相似文献   

15.
The paper presents a new class of parametric interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of electric field intensity. This solution gives us wide range of parameter, K (0.69≤K≤7.1), for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a superdense object is maximized with all degree of suitability by assuming the surface density of the star equal to the normal nuclear density ρ nm=2.5×1017kg?m?3. By this model we obtain the mass of the Crab pulsar M Crab=1.401M and the radius, R Crab=12.98 km constraining the moment of inertia I NS,38>1.61 for the conservative estimate of Crab nebula mass 2M and M Crab=2.0156M with radius, R Crab=14.07 km constraining the moment of inertia I NS,38>3.04 for the newest estimate of Crab nebula mass 4.6M which are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields the moments of inertia for PSR J0737-3039A and PSR J0737-3039B are I A,38=1.4624 and I B,38=1.2689 respectively. It has been observed that under well behaved conditions this class of parametric solution gives us the maximum gravitational mass of causal superdense object 2.8020M with radius 14.49 km, surface redshift z R =0.4319, charge Q=4.67×1020 C, and central density ρ c =2.68ρ nm.  相似文献   

16.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

17.
We investigate the combined effect of neutron and proton superfluidities on the cooling of neutron stars whose cores consist of nucleons and electrons. We consider the singlet state paring of protons and the triplet pairing of neutrons in the cores of neutron stars. The critical superfluid temperatures T c are assumed to depend on the matter density. We study two types of neutron pairing with different components of the total angular momentum of a Cooper pair along the quantization axis (|m J |=0 or 2). Our calculations are compared with the observations of thermal emission from isolated neutron stars. We show that the observations can be interpreted by using two classes of superfluidity models: (1) strong proton superfluidity with a maximum critical temperature in the stellar core T c max ?4×109 K and weak neutron superfluidity of any type (T c max ?2×108 K); (2) strong neutron superfluidity (pairing with m J =0) and weak proton superfluidity. The two types of models reflect an approximate symmetry with respect to an interchange of the critical neutron and proton pairing temperatures.  相似文献   

18.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

19.
Two extreme ultraviolet (EUV) spectrophotometers flown in December 1978 on Venera 11 and Venera 12 measured the hydrogen Lyman α emission resonantly scattered in the atmosphere of Venus. Measurements were obtained across the dayside of the disk, and in the exosphere up to 50,000 km. They were analyzed with spherically symmetric models for which the radiative transfer equation was solved. The H content of the Venus atmosphere varies from optically thin to moderately thick regions. A shape fit at the bright limb allows one to determine the exospheric temperature Tc and the number density nc independently of the calibration of the instrument or the exact value of the solar flux. The dayside exospheric temperature was measured for the first time in the polar regions, with Tc = 300 ± 25°K for Venera 11 (79°S) and Tc = 275 ± 25°K (59°S) for Venera 12. At the same place, the density is nc = 4?2+3 × 104 atom.cm?3, and the integrated number density Nt from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom.cm?2, a factor of 3 to 6 lower than that predicted in aeronomical models. This probably indicates that the models should be revised in the content of H-bearing molecules and should include the effect of dynamics. Across the disk the value of Nt decreases smoothly with a total variation of two from the morning side to the afternoon side. Alternately it could be a latitude effect, with less hydrogen in the polar regions. The nonthermal component if clearly seen up to 40,000 km of altitude. It is twice as abundant as at the time of Mariner 10 (solar minimum). Its radial distribution above 4000 km can be simulated by an exospheric distribution with T = 1030K and n = 103 atom.cm?3 at the exobase level. However, there are less hot atoms between 2000 and 4000 km than predicted by an ionospheric source. A by-product of the analysis is a determination of a very high solar Lyman α flux of 7.6 × 1011 photons (cm2 sec Å)?1 at line center (1 AU) in December 1978.  相似文献   

20.
The temperatures, radii, and masses of 81 He-rich white dwarfs are calculated from photometric data. It is shown that, on the average, they are less massive than DA white dwarfs: 70% of He-rich white dwarfs have masses<0.55M . Space density and birth-rate for different mass groups of H-rich and He-rich white dwarfs are obtained. Birth-rate is 1×10?12 pc?3 yr?1 and 1.5×10?12pc?3yr?1 for He-rich and H-rich white dwarfs, respectively. The mean mass of nascent white dwarfs is about 0.55M . It is shown thatV Tand its dispersion σ are correlated with the mass of white dwars, and from this progenitors' masses — of different mass groups of white dwarfs are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号