首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The X-ray data of a sample of 104 flare stars (FSs) in the Pleiades cluster region obtained by Stauffer et al. [1] on the basis of deep ROSAT PSPC observations are analyzed. If we divide the X-ray emission detected in late-type stars of the Pleiades cluster into FSs and non-FSs, we find that X-ray luminosities of stars of both groups can be considered as coming from the same parent population. Moreover, in order to classify stars in a sample of 23 late-type Pleiades stars of unknown nature discriminant analysis in a four-dimensional parameter space (log (Lx, log (Lx/Lbol), and ROSAT hardness ratios HR1 and HR2) has been used. It can be shown that the majority of these stars (16) are very likely FSs rather than non-FSs. Published in Astrofizika, Vol. 40, No. 4, pp. 545–557, October-December, 1997.  相似文献   

3.
Radio stars are identified optically with bright stars located in the direction of the cluster A3487 (RA(J) = 11h31m58s, DEC(J) = −31°11’34".8) with an accuracy determined by the refraction of radio waves in the interstellar medium in this direction of the sky. Within an area of 1 sq. degree, 60% of the strong radio sources with P > 0.004 Jy are identified with stars brighter than 10 m.  相似文献   

4.
5.
Discs in the 6 Myr old cluster η Chamaeleontis were searched for emission from hot H2. Around the M3 star ECHA J0843.3−7905, we detect circumstellar gas orbiting at ∼2 au. If the gas is ultraviolet excited, the ro-vibrational line traces a hot gas layer supported by a disc of mass  ∼0.03 M  , similar to the minimum mass solar nebula. Such a gas reservoir at 6 Myr would promote the formation and the inwards migration of gas giant planets.  相似文献   

6.
We have observed the region of the Coma cluster at 34.5 MHz with a resolution of 26 arcmin × 40 arcmin. A map of the diffuse halo (Coma C) is presented. The size of the halo is found to be 54 arcmin × 30 arcmin. The position angle is 50° ± 10° and the integrated flux is 60 ± 11 Jy. We have also found an extended source to the south of Coma A. The measured half-power widths of this source are 30 arcmin × 40 arcmin. The position angle is 135° and the integrated flux is ~ 15 Jy at 34.5 MHz. The spectral index in the frequency range 408 to 34.5 MHz is -1.0. It is suggested that this source also belongs to the Coma cluster.  相似文献   

7.
8.
9.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

10.
The dependence of interstellar extinction on distance in the direction of the dark cloud south of Merope is determined using photoelectric photometry of 93 stars in the Vilnius photometric system. The cloud front edge is detected at 120–130 pc from the Sun and the distance of the Pleiades cluster is found to be 127 pc. Mean extinctionA V in the Merope cloud is of the order of 1.0 mag. There is no evidence of extinction at distances exceeding the Merope cloud distance. Variable extinction method yieldsR=A V/EB-V=3.6, while the maximum polarization wavelength method gives the value 3.4. Some Pleiades stars are suspected to be unresolved binaries.  相似文献   

11.
We present newly measured energy distributions from 3200–7500 Å of five late-type Be stars in Pleiades cluster for search of peculiarities of Be stars continuum energy distributions. Empirical effective temperatures of Be stars have been derived by comparing observed and computed fluxes in the visible region. The variation of the flux in the Balmer continuum region of Pleione (28 Tau) has been discussed.  相似文献   

12.
We explore the implications of the discovery of hard, power-law X-ray sources in the spectra of nearby elliptical galaxies for the origin of the X-ray background (XRB). The spectra of these sources are consistent with models of thermal bremsstrahlung emission from low radiative efficiency accretion flows around central supermassive black holes and are unique in that they approximately match the spectrum of the hard XRB. If such sources, with luminosities consistent with those observed in nearby elliptical galaxies, are present in most early-type galaxies, then their integrated emission may contribute significantly to the XRB. These sources may also contribute to the hard source counts detected in deep X-ray surveys.  相似文献   

13.
We present 10-μm ISO -SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO -SWS spectrum reveals emission from highly ionized species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5 and 6.3 cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by ∼ 14 arcsec. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and non-thermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10 μm reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison with prior radio observations of hot stars such as O and B supergiants and Wolf–Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (τ ∼ 103 yr). The extended non-thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2–10 keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.  相似文献   

14.
X-ray radiation is used to study coronal phenomena in conjunction with meter wave observations during some large solar flares. It is found that metric flare continua and moving type IV bursts are associated with gradual and long lasting (a few tens of minutes) microwave and hard X-ray emissions. The detailed temporal analysis reveals that although metric and hard X-ray sources are located at very different heights, both kinds of emission result from a common and continuous/repetitive injection of electrons in the corona. The late part of the metric event (stationary type IV burst) is only associated with soft X-ray radiation. This indicates that the mean energy of the radiating electrons is lower during stationary type IV bursts than during the earlier parts of the event.  相似文献   

15.
16.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

17.
Detailed three-dimensional numerical simulations of an elliptical galaxy orbiting in a gas-rich cluster of galaxies indicate that gas dynamic stripping is less efficient than the results from previous, simpler calculations by Takeda et al. and Gaetz et al. implied. This result is consistent with X-ray data for cluster elliptical galaxies. Hydrodynamic torques and direct accretion of orbital angular momentum can result in the formation of a cold gaseous disc, even in a non-rotating galaxy. The gas lost by cluster galaxies via the process of gas dynamic stripping tends to produce a colder, chemically enriched cluster gas core. A comparison of the models with the available X-ray data of cluster galaxies shows that the X-ray luminosity distribution of cluster galaxies may reflect hydrodynamic stripping, but also that a purely hydrodynamic treatment is inadequate for the cooler interstellar medium near the centre of the galaxy.  相似文献   

18.
Observations of the Pleiades cluster by the method of stellar tracks, carried out on the 40-inch Schmidt telescope of Byurakan Astrophysical Observatory, have resulted in the detection of 49 flares from 38 stars, 17 of which were not previously known to be flare stars. It is shown that for bright stars (U ≤ 16.0) the detection of flares in observations by the method of stellar tracks is at least three times more efficient than for observations by the method of stellar chains. Another advantage of the first method is that one can detect brief flares that last less than 6 min. The visual stellar magnitude at the minimum for the brightest of the flare stars that we found is 11.92. This raised the upper luminosity limit of known flare stars in the Pleiades by 0.21 magnitude. A comparison of the expected number of bright flare stars in the Pleiades with the number of all bright members of the cluster (falling in the range from V ≈ 12.0 toV ≈16.0) suggested that all these stars evidently must be flare stars. Translated from Astrofizika, Vol. 42, No. 3, pp. 351–358, July–September, 1999.  相似文献   

19.
The radio spectral index map of the Coma halo shows a progressive steepening of the spectral index with increasing radius. Such a steepening cannot be simply justified by models involving continuous injection of fresh particles in the Coma halo or by models involving diffusion of fresh electrons from the central regions.
We propose a two-phase model in which the relativistic electrons injected in the Coma cluster by some processes (starbursts, AGNs, shocks, turbulence) during a first phase in the past are systematically reaccelerated during a second phase for a relatively long time (∼1 Gyr) up to the present time. We show that for reacceleration time-scales of ∼0.1 Gyr this hypothesis can well account for the radio properties of Coma C. For the same range of parameters which explain Coma C we have calculated the expected fluxes from the inverse Compton scattering of the Cosmic Microwave Background (CMB) photons, finding that the hard X-ray tail discovered by BeppoSAX may be accounted for by the stronger reacceleration allowed by the model.
The possibility of extending the main model assumptions and findings to the case of the other radio haloes is also discussed, the basic predictions being consistent with the observations.  相似文献   

20.
We present an analysis of the diffuse hard X-ray emission in the core of the young massive Galactic cluster Westerlund 1 based on a 48 ks XMM-Newton observation. Chandra results for the diffuse X-ray emission have indicated a soft thermal component together with a hard component that could be either thermal or non-thermal. We seek to resolve this ambiguity regarding the hard component exploiting the higher sensitivity of XMM-Newton to diffuse emission. Our new X-ray spectra from the central (2′ radius) diffuse emission are found to exhibit He-like Fe 6.7 keV line emission, demonstrating that the hard emission in the cluster core is predominantly thermal in origin. Potential sources of this hard component are reviewed, namely an unresolved Pre-Main Sequence population, a thermalized cluster wind and Supernova Remnants interacting with stellar winds. We find that the thermalized cluster wind likely contributes the majority of the hard emission with some contribution from the Pre-Main Sequence population. It is unlikely that Supernova Remnants are contributing significantly to the Westerlund 1 diffuse emission at the current epoch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号