首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
It is shown that the particle inertia can cause a tearing instability in an electron-positron collisionless plasma with sheared magnetic fields. An approximate analytical expression for the growth rate is obtained. It characterizes the magnetic reconnection timescale in a magnetized electronpositron plasma.  相似文献   

2.
V. Krishan 《Solar physics》1982,80(2):313-316
It is shown that high-m drift tearing modes can be excited under the conditions prevalent at the solar flare sites. Since the growth rate of the high-m tearing modes is larger than that for low-m macroscopic tearing modes and smaller than that of microscopic ion-acoustic instability, these modes warrant accommodation in the scheme of instabilities possibly operating in the hybrid model of solar flares suggested by Spicer.  相似文献   

3.
4.
We investigate the nonlinear evolution of resistive tearing mode in a current sheet with a sheared flow in a long, thin cylinder. The results show that a hyperbolic secant (sech) flow field will lead to instability of the resistive tearing mode, formation of magnetic islands and rapid release of magnetic energy. The coupling between sheared flow and the tearing mode and interaction between suprathermal instabilities change the degree of shear in the magnetic field (the electric current gradient) and drive the development of the instability. This process may be one of the mechanisms of solar flares.  相似文献   

5.
D. S. Spicer 《Solar physics》1981,71(1):115-124
We develop a simple, but physically consistent, model of heating and particle acceleration by fast tearing modes, for modeling compact loop flares or erupting prominences. It is shown that there is a slow preheating, over many e -foldings of the instability, after which a rapid heating takes place in approximately one e-folding. The role of anomalous resistivity excited by the induced electric field during tearing is discussed, and how both thermal conduction and plasma expansion may play a role in cooling. Estimates for the total number of thermal and non-thermal electrons generated by one fast tearing mode are given, and it is argued that collisional tearing modes give rise to a primarily thermal plasma.  相似文献   

6.
7.
8.
We consider the mean electromotive force and a dynamo-generated magnetic field, taking into account the stretching of turbulent magnetic field lines by a shear flow. Calculations are performed by making use of the second-order correlation approximation. In the presence of shear, the mirror symmetry of turbulence can be broken; thus turbulent motions become suitable for the generation of a large-scale magnetic field. Regardless of the shear law, turbulence can lead to a rapid amplification of the mean magnetic field. The growth rate of the mean magnetic field depends on the length-scale: it is faster for the fields with smaller length-scale. The mechanism considered is qualitatively different from the alpha dynamo, and can generate only a magnetic field that is inhomogeneous in the direction of flow. In contrast to the alpha dynamo, this mechanism also allows the generation of two-dimensional fields. The suggested mechanism may play an important role in the generation of magnetic fields in accretion discs, galaxies and jets.  相似文献   

9.
10.
11.
12.
Results are presented concerning the interaction between regions of convectively unstable fluid, bounded above and below by stable fluid, with a basic horizontal flow field, sheared in a vertical direction. The analysis is conveniently based on the definition of the mechanical energy flux associated with wave motion in a stratified compressible fluid, and enables bounds to be placed on the real and complex phase velocities of overstable modes, in addition to some general results on the net upward wave energy flux. It is shown that purely exponentially growing modes (with horizontal wavevectors spanwise to the shear) do not exist. A known sufficient condition for the stability of stable atmospheres is reproduced here with an interesting modification, and details of energy-flux discontinuities at certain singular points of the equations are given. The work is relevant to any astrophysical and geophysical situations in which convectively unstable regions and shear flows are likely to be together present, but the special motivation here is that of describing some aspects of the interaction between supergranular flow and granular convection.  相似文献   

13.
The stability of a velocity shear in the presence of a parallel but non-uniform magnetic field is considered in general terms. Two special cases are then investigated; (i) the well known case of a plane interface at which a discontinuity in the magnetic field coincides with the velocity shear; (ii) an axially symmetric flow in which discontinuities in the magnetic and velocity fields occur at a cylindrical surface whose axis is parallel to the flow. In the first case the flow is stabilized if the rms Alfvén velocity of the magnetic field exceeds the shear velocity; a result consistent with that obtained by other writers. In the second case it is shown that the discontinuity in the magnetic field increases the stability of the system. The significance of this result for the stability of the flux ropes associated with sunspots in the solar convection zone is considered.  相似文献   

14.
By using the method of 2-dimensional, 3-component full particle simulation, collisionless magnetic reconnection in the presence of various initial guide fields and the Harris current sheet with 1-dimensional initial state are studied. The results show that strong guide fields with Bz0 > 0.5B0 can evidently alter not only the trajectory of the particles, but also the structure of the electric and velocity fields in the vicinity of the reconnection region, thereby affecting the rate of reconnection and the acceleration of electrons. The generalized Ohm's law is employed to interpret the structural characteristics of the electric fields with various guide fields. Also, via the tracing of the electron beam near he diffusion region, it is revealed that in the 2-D model, for both strong and weak guide fields, the induced electric field perpendicular to the simulation plane at the center of the diffusion region plays the major role in the acceleration of electrons. The contribution of the planar electric field outside the diffusion region is very small.  相似文献   

15.
Shear flow instability is studied in the planar magnetopause boundary layer region by treating the plasma as compressible. A necessary criterion for instability near the Alfvén resonance is obtained. Sufficient criterion for instability is derived from the solution of a six degree polynomial for the cases of constant and antisymmetric velocity profiles when there is no Alfvén resonance. Both the criteria are obtained analytically for the first time. The necessary criterion generalises the well-known inflexion point theorem and Rayleigh's criterion in the hydrodynamic case to magnetohydrodynamic case for incompressible plasma provided both the Alfvén surfaces lie in the boundary layer. The Alfvén resonant surfaces are similar to the boundary walls in hydrodynamics. A semi-hyperbola theorem for the unstable situation is derived which represents the domain of Doppler shifted real frequency and imaginary frequency. From the sufficient criterion for instability it is observed that plasma shear should be more for a compressible plasma in order to make the plasma unstable. The growth rate for instability is obtained. A thin layer around Alfvén resonance effectively determines how fast the flow could attain instability.  相似文献   

16.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

17.
The collisionless deceleration of electron streams responsible for type IIIb bursts has been investigated. For this the difference between the mean velocities of electron streams at plasma levels corresponding to 25 and 12.5 MHz, on one hand, at 12.5 and 6.25 MHz, on the other hand, is estimated. The mean velocity of electron streams between these levels is determined by the time delay in the moments of arrival of radio bursts from these levels. The distance between plasma levels is determined under the assumption that the (statistical) mean velocity of sources of the diffusive type III bursts is constant and equal toc/3 at all considered levels of the solar corona.It is shown that under this assumption the electron streams with the initial velocities of the order of 0.4–0.8c undergo a sufficient deceleration which is characterized by a decrease in their mean velocity by 15–17% between plasma levels at 25 to 6.25 MHz. The stream deceleration becomes more essential with the growth of the initial velocity of the stream. On the other hand, the deceleration disappears when the initial velocity of the stream is of the order of 0.35c. This critical velocityV s * - 0.35c is assumed to define a boundary between two different expansion regimes of fast electrons moving in the solar corona. In the first regime (V s >V s * ) the induced scattering of plasma waves produces energy losses of the streams. A decrease in the velocities of streams up to the value of the order of 0.35c is due to these losses. In the second regime (V s -V s * ) a quasilinear expansion of streams is realized. In this case the energy losses of the streams are almost absent.  相似文献   

18.
王桢  陈玲  吴德金 《天文学报》2023,64(3):37-260
无碰撞磁场重联作为一种将磁能有效转化为等离子体动能和热能的机制,已经被广泛应用于解释太阳耀斑、地球磁暴等各类等离子体的爆发活动.然而,在无碰撞重联区中反常电阻的微观物理机制仍然是尚未解决的基本问题.在众多反常电阻的形成机制中,基于磁零点附近粒子轨道混沌性产生的混沌感应电阻,虽然不是最普遍流行的形成机制,但它的微观物理图像却是最为清晰的.回顾了无碰撞重联区中混沌感应电阻的早期研究和基本理论模型,介绍了关于混沌感应电阻研究的新进展并阐述了混沌感应电阻未来的研究方向.  相似文献   

19.
空间无碰撞激波的数值研究   总被引:2,自引:0,他引:2  
王水  陆全明 《天文学进展》1997,15(3):218-230
无碰撞激波是空间等离子体和宇宙等离子体中的重要物理现象。文中评述了数值研究空间无碰撞激波的两种方法-粒子模拟和混合模拟,给出了准垂直和准平行无碰撞激波的数值研究结果。还指出了一些尚未解决的研究问题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号