首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The diurnal and seasonal variations of H+, He+, N+, O+ and Ne are analyzed at 1400-km altitude. Using longitudinally averaged observations of ISIS-2 (April 1971 to December 1972), the ion and electron densities are decomposed via spherical harmonics and Fourier series into time-independent, seasonal and diurnal terms. The time-independent terms of H+ and He+ show a plateauor trough-like structure at medium to low latitudes and a strong decrease towards the poles; N+ and O+, on the other hand, yield an almost inverse picture with a density increase at high latitudes. All constituents, except He+, show at polar latitudes an enhancement during local summer conditions and a depletion during local winter conditions; He+, however, exhibits a winter bulge and a density minimum during local summer. The diurnal variations are strongly latitude dependent; while the amplitudes (relative) of H+, He+, and Ne are rather small, the heavier ions N+ and O+ show a deep minimum early in the morning and a high but flat maximum during daytime.  相似文献   

2.
《Planetary and Space Science》1999,47(6-7):745-763
An improved magnetohydrodynamic (MHD) model with chemistry is presented. The analysis of the source and sink terms for H2O + shows that for small comets up to 11% of water molecules are finally ionized. For large comets (such as Halley) this fraction decreases to less than 3%. From the MHD scaling laws a similarity law for the individual ion densities is deduced which takes into account that the mother molecules are depleted by dissociation. This is applied to H2O + ions. Radial density profiles from model calculations, observations by Giotto near comet Halley, and ground based observations of three comets confirm this scaling law for H2O + ions. From the similarity law for the density a scaling law for the column density is derived which is more convenient to apply for ground based observations. From these scaling laws methods are derived which allow the determination of the water production rate from the ground based images of the H2O + ions. Finally, the two dimensional images of model column densities are compared with observations.  相似文献   

3.
The evolution of the charged particles are followed during contraction of a model of an interstellar cloud, with initial density number of n = 10 cm–3. The contraction is followed up to density increase by five orders of magnitude. Special care is given to the details of the negative ions. In addition, we have tested the ambipolar diffusion according to the results of the ion density.The results predict the importance of atomic ions in the diffuse regions. H+ and C+ are distinctly enhanced in the beginning of contraction but decrease as contraction proceeds. Molecular ions enhance as contraction proceeds and becomes important in dense regions. The most enhanced molecular ions are HCO+, O2 +, C2H3 +, H3O+ and SO+, H3 + is less abundant. The atomic ions (except metalic ions) decrease noticeably as density increases. In general the negative ions are of negligible fractional abundances. It has also been found that the time of ambipolar diffusion is shorter than the dynamical time, hence the magnetic field should be weakened in the central core as the central density increases to n = 104 cm–3.  相似文献   

4.
The median values of the principal ionospheric quantities of the Venus dayside ionosphere are presented. The values are derived from the quantities measured by the Pioneer-Venus orbiter retarding potential analyzer over a period of two Earth yaers at solar cycle maximum. Quantities reported are total ion density, O+ density, O2+ density, sum density (NO+ + N2+ + CO+), CO2+ density, ion temperature, electron temperature, and plasma particle pressure. The data are organized to reveal altitude, solar zenith angle, solar longitude, and latitude dependences. The O+ density exhibits both a solar longitude and a latitude dependence which we suggest is caused by superrotation of the thermosphere and/or ionosphere. Asymmetry between the dawn and dusk terminator regions in the behavior of other quantities is also descibed.  相似文献   

5.
Recent satellite observations of thermal ion composition in the near-equatorial plasmasphere have shown that He+ comprises 5–10% typically and occasionally 25% or more of the total thermal ion density. A steady state diffusive equilibrium model for the distributions of H+, He+ and O+ along a plasmaspheric flux tube is used to elicit effects that may help explain these observed high He+ fractional concentrations. The model indicates that both the ionospheric composition and the temperature distribution along the flux tubes are important factors controlling the equatorial He+ composition, through the plasma scale height and thermal diffusion effects. Direct comparison of the model results with thermal ion observations by ISEE-1 indicates that the effects incorporated into the model may explain some of the elevated He+ concentrations. In some instances, however, effects not included in the model may also be of importance.  相似文献   

6.
Empirical models of three dimensional electron density distributions in the ionosphere have been constructed for global as well as regional use. The models differ by their degree of complexity and calculation time and therefore have different uses. All are based on “ionogram parameter” (critical frequencies foE, foF1, foF2 and the F2 region transfer parameter M(3000)F2). The models allow the use of global or regional maps for foF2 and M(3000)F2 and use built-in formulations for foE and foF1. Update (instantaneous mapping / nowcasting) versions exist which take foF2 and M(3000)F2 or F2 region peak height and electron density as input. The ground to F2 layer peak part of the profile is identical for all three models and is based on an Epstein formulation. The “quick calculationr” model NeQuick uses a simple formulation for the topside F layer, which is essentially a semi-Epstein layer with a thickness parameter which increases linearly with height. The “ionospheric model” COSTprof is the model which was adopted by COST 251 in its regional “monthly median” form. Its topside F layer is based on O+-H+ diffusive equilibrium with built-in maps for three parameters, namely the oxygen scale height at the F2 peak, its height gradient and the O+-H+ transition height. The “ionosphere-plasmasphere” model NeUoG-plas uses a magnetic field aligned “plasmasphere” above COSTprof Typical uses of the models and comparison among them are discussed.  相似文献   

7.
Jane L. Fox 《Icarus》2011,216(2):625-639
We have modeled the near and post-terminator thermosphere/ionosphere of Venus with a view toward understanding the relative importance of EUV solar fluxes and downward fluxes of atomic ions transported from the dayside in producing the mean ionosphere. We have constructed one-dimensional thermosphere/ionosphere models for high solar activity for seven solar zenith angles (SZAs) in the dusk sector: 90°, 95°, 100°, 105°, 110°, 115° and 125°. For the first 4 SZAs, we determine the optical depths for solar fluxes from 3 Å to 1900 Å by integrating the neutral densities numerically along the slant path through the atmosphere. For SZAs of 90°, 95°, and 100°, we first model the ionospheres produced by absorption of the solar fluxes alone; for 95°, 100°, and 105° SZAs, we then model the ion density profiles that result from both the solar source and from imposing downward fluxes of atomic ions, including O+, Ar+, C+, N+, H+, and He+, at the top of the ionospheric model in the ratios determined for the upward fluxes in a previous study of the morphology of the dayside (60° SZA) Venus ionosphere. For SZAs of 110°, 115° and 125°, which are characterized by shadow heights above about 300 km, the models include only downward fluxes of ions. The magnitudes of the downward ion fluxes are constrained by the requirement that the model O+ peak density be equal to the average O+ peak density for each SZA bin as measured by the Pioneer Venus Orbiter Ion Mass Spectrometer. We find that the 90° and 95° SZA model ionospheres are robust for the solar source alone, but the O+ peak density in the “solar-only” 95° SZA model is somewhat smaller than the average value indicated by the data. A small downward flux of ions is therefore required to reproduce the measured average peak density of O+. We find that, on the nightside, the major ion density peaks do not occur at the altitudes of peak production, and diffusion plays a substantial role in determining the ion density profiles. The average downward atomic ion flux for the SZA range of 90–125° is determined to be about 1.2 × 108 cm−2 s−1.  相似文献   

8.
Theoretical results on the daily variation of O+ and H+ field-aligned velocities in the topside ionosphere are presented. The results are for an L = 3 magnetic field tube under sunspot minimum conditions at equinox. They come from calculations of time-dependent O+ and H+ continuity and momentum balance in a magnetic field tube which extends from the lower F2 region to the equatorial plane (Murphy et al., 1976).There are occasions when ion counterstreaming occurs, with the O+ velocity upward and H+ velocity downward. The conditions causing this counterstreaming are described: the H+ layer is descending whilst O+ is supplied from below either to increase the O+ concentration at fixed heights or to replace O+ ions lost by charge exchange with neutral H. It is suggested that the results of observations at Arecibo by Vickrey et al. (1976) of O+ and H+ concentrations and counterstreaming velocities are significantly affected by E×B drift.  相似文献   

9.
The effects of F-region neutral winds on the distribution of He+ in the equatorial ionosphere have been examined using a theoretical model and an observational data set. It is shown by the model that components of neutral wind in the magnetic meridian up to only 50 m s? can produce He+ gradients in the northern and southern sectors of a flux tube that differ by more than 80%. This is associated with interhemisphere transport velocities of He+ as large as 15 m s?1 at 800 km. A substantial latitude gradient in the He+ distribution across the dip equator also results from the redistribution of He+ The changes in the He+ concentration at the dip equator and the latitude distribution of He+ in response to different neutral wind components is determined from the model and used to construct longitude distributions of He+ to compare with observations made at equinox. Good agreement between the calculations and observations is obtained both at the geographic and geomagnetic equators using the relationship between neutral winds, interhemispheric transport velocity and He+ concentration derived from the model. If these relationships can be extrapolated to accommodate the different conditions expected during solstice, we can also discuss the He+ distributions expected during this season.  相似文献   

10.
Two envelope soliton events below the H + gyrofrequency with localized density depletion were discovered in low auroral region (∼ 1760 km)by Freja satellite. These events were correlated in time with the observations of the ratio of oxygen ion density to hydrogen ion density sharp increase and the electrons energization. These envelope solitons have a characteristic frequency at ∼ 180–190 Hz, which are obviously different from the electron-ion lower hybrid wave frequency and the helium ion gyrofrequency in low auroral plasma, but it is close to the resonancefrequency of hydrogen ion-oxygen ion hybrid wave. A modulational instability model of an ion-ion hybrid wave has been discussed here. It is found that the envelope soliton below the H + gyrofrequency in low auroral region may be generated by this modulational instability on condition that the local oxygen ion density is larger than the local hydrogen ion density. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Vertical profiles of electron density obtained in the vicinity of the plasmapause using the Alouette-II topside sounder have been analyzed to assess the presence of H+ flow in the topside ionosphere. The observations in the midnight sector show clearly the presence of the plasmapause; i.e. there is a sharp boundary separating the poleward regions of polar wind H+ flow and the more gentle conditions of the plasmasphere where light ions are present in abundance. In contrast, in the sunlit morning sector upwards H+ flow is deduced to be present to invariant latitudes as low as 48° (L = 2·2) in the regions normally known to be well inside the plasmasphere. The upwards H+ flux is sufficiently large (3 × 108 ions cm?2 sec?1) that the plasmapause cannot be seen in the latitudinal electron density contours of the topside ionosphere. The cause for this flow remains unknown but it may be a result of a diurnal refilling process.  相似文献   

12.
Extensive calculations have been made of the behaviour of He+ for situations where ion outflow occurs from the topside ionosphere. For these circumstances, steady state solutions for the He+ continuity, momentum and energy equations have been obtained self-consistently, yielding density, velocity and temperature profiles of He+ from 200 to 2000 km altitude. To model the high latitude topside ionosphere, a range of background H+O+ ionospheres was considered with variations in the H+ outflow velocity, the presence of a perpendicular electric field and different peak O+ densities. In addition, the atmospheric density of neutral helium was chosen to model typical observed winter and summer densities. From our studies we have found that: (a) The outflowing He+ has density profiles of similar shape to those of H+, for basically different reasons; (b) The effect of the perpendicular electric field differs considerably for H+ and He+. This difference stems from the fact that an electric field acts to alter significantly the O+ density at high altitudes and this, in turn, changes the H+ escape flux through the O++H charge exchange reaction. A similar situation does not occur for He+ and therefore the He+ escape flux exhibits a negligibly small change with electric field; (c) The fractional heating of He+ due to the He+O+ relative flow is not as effective in heating He+ as the H+O+ relative flow is in heating H+; (d) During magnetospheric disturbances when the N2 density at the altitude of the He+ peak (600 km) can increase by a factor as large as 50, the He+ peak density decreases only by approximately a factor of 2; and (e) The He+ escape flux over the winter pole is approximately a factor of 20 greater than the He+ escape flux over the summer pole. Consequently, on high latitude closed field lines there could be an interhemispheric He+ flux from winter to summer.  相似文献   

13.
Observations of the occurrence of He+ dominance in the topside ionosphere are discussed. An earlier model of the behaviour of high-latitude H+ and O+ thermal plasma (Quegan et al., 1982) is extended to include He+ as a major ion. Calculations using the extended model show that plasma convection is likely to play a key rôle in producing regions of He+ dominance. Suggested conditions for He+ dominance are listed and their applicability to observed He+ behaviour is discussed.  相似文献   

14.
We formulate rate equations for the reaction network coupling H, H, H+, H2, and H2 +. We attempt to systematize the notation, and to write the equations in a form suitable for modern computational methods of handling the coupled rate equations and radiative transfer equations, for both dynamical and static atmospheres. We have accounted for more processes than are generally considered in most current work; some of these may have an impact on the equilibrium of H (hence its opacity) and on charge conservation (hence the proton density) in the atmospheres of solar-type stars.Operated by the Association of Universities for Research in Astronomy, Inc. under Contract AST 78-17292 with the National Science Foundation.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
The temporal response of ion and neutral densities to a geomagnetic storm has been investigated on a global scale with data from consecutive orbits of OGO-6 (>400km) for 4 days covering both magnetically quiet and disturbed conditions. The first response of the neutral atmosphere to the storm takes place in the H and He densities which start to decrease near the time of the storm sudden commencement. The maximum decreases in H and He were more than 40% of the normal density at high latitudes. A subsequent increase in O and N2 densities occurs about 8 hours later than the change in H and He densities, while the relative O and N2 density changes indicate a depletion of atomic oxygen in the lower thermosphere by more than a factor of two. The overall features of the change in the neutral atmosphere, especially the patterns of change for individual species, strongly support the physical picture that energy is deposited primarily at high latitudes during the storm, and the thermosphere structure changes through (1) heating of the lower thermosphere and (2) generation of large scale circulation in the atmosphere with upwelling at high latitudes and subsidence at the equator. The storm-time response of H+ occurs in two distinct regions separated by the low latitude boundary of the light ion trough. While on the poleward side of the boundary the H+ density decreases in a similar manner to the decrease in H density, on the equatorward side of the boundary the H+ decrease occurs about half a day later. It is shown that the decrease of H+ density is principally caused by the decrease in H density for both regions. The difference in H+ response between the two regions is interpreted as the difference in H+ dynamics outside and inside the plasmasphere. The O+ density shows an increase, the pattern of which is rather similar to that for O. Two possibilities for explaining the observed change in O+ density are suggested. One attributes the observed increase in O+ density to an increase in the plasma temperature during the storm. The other possibility is that the increase in the production rate of O+ due to an increase in O density exceeds the increase in the loss rate of O+ due to an increase in N2 density, especially around the time of sunrise. Hence the change in O+ density in the F-region may actually be controlled by the change in O density.  相似文献   

16.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

17.
A Monte Carlo simulation is used in order to study the effects of wave-particle interactions (WPI) on H+ distributions in the polar wind outflow. The simulation also considers effects of the gravity, the polarization electric field, the divergence of geomagnetic field lines and H+−O+ Coulomb collisions. The proton velocity distribution function (VDF) and the profiles of its moments (density, bulk velocity, parallel and perpendicular temperatures, heat flux…) are found for different levels of WPI, i.e., for different values of the normalized diffusion rate in the velocity space (D ). We find that the wave-particle interactions accelerate the polar wind and can have important effects on the double-hump H+ distribution obtained in the transition region between the collision-dominated low altitudes and the collisionless high altitude regions.  相似文献   

18.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

19.
The high electron temperatures existing within SAR-arcs can result in enhanced vibrational excitation of atmospheric N2 molecules and, as a consequence, increase the rate coefficient of the reaction, O+ + N2 → NO+ + N. This results in a change in the relative abundance of O+ and NO++ in the SAR-arc region compared with that in the undisturbed ionosphere. Theoretical ion density profiles were computed by a triple ion analysis solving the mass, momentum and energy equations for O+, NO+ and O+2 ions self-consistently. Although the electron temperature dependence of the recombination rate of NO+ is not well known, the results show that for a range of expected recombination rates NO+ still remains the dominant ion up to ca. 320 km at night within a bright SAR-arc. Studies were also made of the relative importance of a downward O+ flux and an upward ion drift in maintaining the F-region under SAR-arc conditions. It was found that the upward drift caused a marked increase in the NO+/O+ transition altitude as high as 460 km at night. However, for typical drift speeds up to 50 m sec?1 the peak electron density was lower than experimental observations. The effect of a large, short-duration perpendicular electric field on the SAR-arc ion and electron density profiles was found to be small. In all cases considered the magnitude of the enhanced NO+ density as a result of vibrationally excited N2 molecules was sufficient to prevent the electron density within the night-time SAR-arc from becoming vanishingly small.  相似文献   

20.
We report the first detection of DCO+ in a circumstellar disk. The DCO+ J=5–4 line at 360.169 GHz is observed with the 15 m James Clerk Maxwell Telescope in the disk around the pre-main sequence star TW Hya. Together with measurements of the HCO+ and H13CO+ J=4–3 lines, this allows an accurate determination of the DCO+/HCO+ ratio in this disk. The inferred value of0.035±0.005 is close to that found in cold pre-stellar cores and is somewhat higher than that measured in the envelope around the low-mass proto star IRAS 16293-2422. It is also close to the DCN/HCN ratio obtained for pristine cometary material in the jet of comet Hale-Bopp. The observed DCO+/HCO+ ratio for TW Hya is consistent with theoretical models of disks which consider gas-phase fractionation processes within a realistic 2-D temperature distribution and which include the effects of freeze-out onto grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号