首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We show that in a quiescent, dense pre-stellar core, exposed to the average interstellar radiation field, radiation pressure can cause the dust to migrate inwards, relative to the gas, on a time-scale of a few megayears – and faster if the radiation field is stronger than average. This has two potentially important effects.
First, there is an increase in the abundance of dust relative to gas in the inner parts of the core, and hence also in the efficiency of gas-cooling by dust. The increased cooling efficiency predisposes these regions to dynamical collapse and star formation. Additionally, it predisposes them to fragmentation, particularly if – as seems likely – the dust enhancements are stochastic and inhomogeneous, due to anisotropy of the incident radiation field and/or to directing of the migration by the local magnetic field. It also increases the metallicities of the resulting stars, and hence presumably the likelihood of planet formation in their accretion discs.
Secondly, there is a steepening of the optical-depth profile, especially at those impact parameters b where the visual optical depth through the core   τ t∼1  . Since the observational evidence for steep optical-depth profiles in the outer envelopes of some pre-stellar cores (specifically   τ t∝ b - β   , with   β ≳2)  constrains only the dust column density, this leaves open the possibility that the gas has a shallower column-density profile.  相似文献   

3.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   

4.
We present a preliminary interpretation of high CO rotational line data obtained from KAO. The possibility of either a PDR or a shock model is considered in order to explain the observations.  相似文献   

5.
Based on a CS and C34S survey of dense molecular-cloud cores in regions of high-mass-star formation, we analyze the correlations between line width and size (ΔV-L), as well as between mean density and size (n-L). There is virtually no correlation between ΔV and LVL 0.2±0.1). The velocity dispersion is several times higher in absolute value than that in CO and dark clouds of the same size. The mean density decreases with increasing size considerably faster than L ?1, so the column density also decreases. Possible effects of selection and of the technique for determining object parameters on these results are discussed. Possible physical causes of the above correlations are considered.  相似文献   

6.
7.
Dense molecular clouds within the Taurus and NGC 2264 regions have undergone gravitational collapse and fragmentation to form groups of low mass (1M ) T-Tauri stars which are still embedded within the clouds and which are kinematically associated with them. Molecular column densities on the order of 1014 cm–2 are inferred from the emission lines of OH and NH3. Emission line widths are 2 km s–1 and the antenna beamwidths include linear extents of order 0.1 pc. The OH emission appears to be in a condition of local thermodynamic equilibrium, and it cannot arise from circumstellar sheils similar to those surrounding the masing infrared stars. The OH and NH3 emission occurs in clouds of 1 pc in extent with optical depths of 0.1 to 1.0 and excitation temperatures of the order of 10 K. The molecular clouds have radii of 0.5 pc, molecular hydrogen densities of 4000 cm–3, masses of 100 solar masses, and kinetic temperatures of 20 K. The observed data are not inconsistent with the molecular clouds being in a state of hydrostatic equilibrium.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

8.
The equilibrium chemistry of silicon in dense interstellar clouds is discussed in terms of both gas phase and grain surface reactions. Unless the metal depletion is very large, the gas phase scheme tends to over-produce SiO and/or SiS when compared to the observations of Sgr B2. The scheme also predicts SiC to be an abundant form of silicon. There is a great need for relevant laboratory data on the reactions used here—of the 35 rate coefficients adopted in the scheme, only three have been measured in the laboratory. Reactions between positively charged gas phase ions and small grains can lead to the formation of SiO and SiS. This type of reaction seems to offer a simple explanation for the observed differences between sulphur and silicon chemistry in dense clouds.  相似文献   

9.
In addition to Massive Astrophysical Compact Halo Objects (MACHOs), as detected by microlensing, cold molecular clouds (mainly ofH 2) may well contribute substantially to the galactic halo dark matter. Here, we argue that the existence of such halo clouds can be inferred from the observation of absorption lines (due to heavy molecules located in the clouds themselves) towards stars of the Large Magellanic Cloud, which lie very close, within 1, to a previously microlensed one.The possibility of clusters of MACHOs has been investigated by several authors (see e.g. Carr and Lacey, 1987; Ashman, 1990; Eichler and Silk, 1992 and Wasserman and Salpeter, 1994).  相似文献   

10.
It is believed that the observed diffuse gamma-ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma-ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma-ray spectra.  相似文献   

11.
13CO(1-0)and C18O(1-0)emissions in the NGC 1333/IRAS6–9 star forming region were mapped with the 13.7 m millimeter wave telescope of Purple Mountain Observatory. The areas covered are 10.3′ × 10′ for 13CO(1-0)and 6.8′ × 8′ for C18O(1-0), respectively. Several new compact molecular cores were discovered and a bipolar outflow of 13CO(1-0)was identified along the SSV12-IRAS8 direction. We present the observed properties and derived the physical parameters for all the 13CO(1-0)and C18O(1-0)cores. The core distribution and velocity structure are analyzed for this region. The relationship between cores, bipolar outflow and crowded young stellar objects (including infrared sources and HH objects) is also discussed in detail.  相似文献   

12.
Measurements of the strengths of the diffuse interstellar bands at 4430, 5780 and 5797 Å show that the bands tend to be week with respect to extinction in dense interstellar clouds. Data on 10 stars in the ? Ophiuchi cloud complex show further that the diffuse band-producing efficiency of the grains decreases systematically with increasing grain size. It is concluded that the diffuse bands are not formed in the mantles which accrete on the grains in interstellar clouds, but that they could be produced in the cores of grains or in some molecular species.  相似文献   

13.
The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray-emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously airtight. The thin disc model of line profiles in AGN and in X-ray binaries should still be benchmarked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray-emitting engine. This model is also motivated by studies of geometrically thick engines such as advection-dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray-emitting discs near a Schwarzschild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure radial infall and bipolar outflows. We find that such models can reproduce line profiles similar to those from geometrically thin, optically thick discs and might help alleviate some of the problems encountered from the latter. Thus, independent of thin discs, thick disc engines can also exhibit iron line profiles if embedded dense clouds can survive long enough to reprocess radiation.  相似文献   

14.
A treatment is given of the thermal coagulation of interstellar grains, taking their charge fully into account. The original calculations showed this charge to be negative unless photoionization dominated when it became positive. More recently, the effects of discreteness in the charge and of grain polarization have been considered and all these effects are included in the present work. The general conclusion is that the effect of charge is to decrease grain coagulation although a very small increase can occur for certain situations in the presence of photoionization.  相似文献   

15.
The density and magnetic field strength of the dense cores in the Orion B molecular cloud are derived from the observed radius and FWHM line width based on the model of a uniformly magnetic sphere. We obtain the average magnetic field strength of 110μG and the average density of 8 × 104/cm3 for the 39 cores, which agree closely with the observations. The method for deriving the density and magnetic field strength is applicable to the cores with R>0.2pc.  相似文献   

16.
The CO distribution in the Galaxy is investigated through an analysis of longitude-velocity diagrams of CO emission lines for the two longitude ranges 20°<l<80° and 105°<l<140°. For the kinematics of the Galaxy we adopt the three typical models; the circular rotation, the linear density waves, and the galactic shock waves. It is shown that the distributions and kinematics of CO clouds are consistent with the predictions of the density wave model and the galactic shock model, and that the observed data of CO emissions do not contradict with the claim that the CO clouds form spiral arms.  相似文献   

17.
Summary This review consists of five sections. In the introduction, we briefly review the development of the study of molecular clouds. In the second section, we review the theories of molecular cloud structure and compare these predictions with the statistical properties of the clouds. In Sect. 3 we give an overview of current approaches to determinations of mass and local density in clouds. In the fourth part, we discuss the observations of a selected sample of individual sources. The emphasis here is on high resolution studies of regions of star formation. The final section contains a discussion of instrumental limitations and mentions some future developments.  相似文献   

18.
S.V.M. Clube  W.M. Napier 《Icarus》1985,62(3):384-388
The observed properties of the long-period comet system, and its periodic disturbance by galactic forces manifesting as terrestrial impact episodes, may be indicative of a comet capture/escape cycle as the Solar System orbits the Galaxy. A mean number density of comets in molecular clouds of ~10?1±1 AU?3 is implied. This is sufficient to deplete metals from the gaseous component of the interstellar medium, as observed, but leads to the problem of how stars are formed nevertheless with solar metal abundances. Formation of comets prior to stars in dense systems of near-zero energy may be indicated, and isotope signatures in cometary particles may be diagnostic of conditions in young spiral arm material.  相似文献   

19.
The origin of very low‐mass objects such as brown dwarfs and ‘isolated planets’ is unclear: can they form in‐situ from very low‐mass cloud cores in a scaled‐down version of star formation? Here I discuss methods of detecting and characterising such faint cores using submillimetre‐wavelength observations. Some data are presented for the Ophiuchus clouds that strongly suggest there is little division between stars and ultra low‐mass objects at the earliest evolutionary stages. Some challenging results have emerged (in the context of current theory), including finding cores of only a few Jupiter masses and a core mass function still rising at the mass detection limit: the implications are briefly discussed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We have studied the behavior of the inner motions of OH, H2CO, and CO molecular clouds. This study shows the existence of two main components of these clouds: the narrow one, associated to dense small clouds and a wide one representing the large diffuse clouds seen in neutral hydrogen, the large clouds are the vortex and intermediate state between turbulent and hydrodynamic motions in the Galaxy.For the dense clouds with sizesd<10 pc we have found a relationship d 0.38 consistent with the Kolmogorov law of turbulence; the densities and sizes of these clouds behave asnd –1. This last relation for these molecular clouds is compared with theHII one. Also, we discuss the effects of the inner magnetic field in these clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号