首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of evaluating the photometric perturbationsB 2m of eclipsing variables in the frequency domain, developed by Kopal (1959, 1975e, 1978) for an interpretation of mutual eclipses in systems whose components are distorted by axial rotation and mutual tidal action. The aim of the present paper has been to establish explicit expressions for the photometric perturbationB 2m in such systems, regardless of the kind of eclipses and non-integral values ofm. Recently, Kopal (1978) introduced two different kinds of integrals with respect to associated α-functions andI-integrals which have been expressed in terms of certain general types of series that can be easily programmed for automatic computation within seconds of real time on highspeed computers. Following a brief introduction (Section 1) in which the need of this new approach will be expounded, in Section 3 we shall deduce the integral $$\int_0^{\theta \prime } {\tfrac{{\alpha _n^\prime }}{\delta }} d(sin^{2m} \theta )$$ in terms of a certain general type of series and also β-function, which should enable us to evaluate explicit expressions forf * (h) ,f 1 (h) ,f 2 (h) as well asB 2m .  相似文献   

2.
After computing theH-functions for 21 different phase functions corresponding to various combinations of \(\bar \varpi \) 1=?1/?and \(\bar \varpi \) 2=?2/?along with 15 values of ?, variations of equivalent widths with phase angle have been obtained for these cases for lines with Lorentz profile with the continuum albedo ? c =0.99. It is found that: (i) The absolute values of equivalent width at any phase angle are Inversely related to the value of phase function for that angle; (ii) The usual inverse phase effect occurs whenever the phase function has a maximum at α=0 and a dip somewhere between α=0 and α=180; (iii) Whenever the phase function has minima at α=0 and α=180 one obtains an incipient inverse phase effect at large phase angles; and (iv) The total variations are larger for weaker lines.  相似文献   

3.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

4.
We present the results of photometric observations of a bright cataclysmic variable TT Ari with an orbital period of 0.13755 days. CCD observations were carried out with the Russian-Turkish RTT 150 telescope in 2001 and 2004 (13 nights). Multi-color photoelectric observations of the system were obtained with the Zeiss 600 telescope of SAO RAS in 1994–1995 (6 nights). In 1994–1995, the photometric period of the system was smaller than the orbital one (0 . d 132 and 0 . d 134), whereas it exceeded the latter (0 . d 150 and 0 . d 148) in 2001, 2004. An additional period exceeding the orbital one (0 . d 144) is detected in 1995 modulations. We interpret it as indicating the elliptic disc precession in the direction of the orbital motion. In 1994, the variability in colors shows periods close to the orbital one (0 . d 136, b-v), as well as to the period indicating the elliptic disk precession (0 . d 146, w-b). We confirm that during the epochs characterized by photometric periods shorter than the orbital one, the quasi-periodic variability of TT Ari at time scales about 20 min is stronger than during epochs with long photometric periods. In general, the variability of the system can be described as a “red” noise with increased amplitudes of modulations at characteristic time scales of 10–40 min.  相似文献   

5.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

6.
The photometric perturbationsB h (l) arising from both tidal and rotational distortion of a close eclipsing binary have been given in two previous papers (Livaniou, 1977; Rovithis-Livaniou, 1977). The aim of the present paper will be to find the eclipse perturbationsB 2m =B 2m, tid +B 2m, rot of a close binary exhibiting partial eclipses. This will be done giving the suitable combinations of theB h (l) 's and will make easier the application to real stars. After a very brief introduction, Section 2 gives both theB 2m, tid andB 2m, rot for uniformly bright discs; while in Sections 3 and 4 they are given for linear and quadratic limb-darkening, respectively. Finally, Section 5 gives a brief discussion of the results.  相似文献   

7.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

8.
The photometric elements of the eclipsing binary NSV 18773 (HD 99898) have been determined for the first time by analyzing its V-and I-band light curves from the ASAS-2 and ASAS-3 catalogs. Based on these elements and using other published spectroscopic and photometric data, we constructed a consistent system of geometrical and physical parameters for the system that consists of two stars (M 1 = 20M , Sp1=B0V, R 1 = 5.0R and M 2 = 14M , Sp2 = B1V, R 2 = 6.5R ) in elliptical orbits (P = 5 . d 049, e = 0.365, a = 40.1R ). The distance to the system is d = 3.3 kpc, the interstellar extinction is A V = 2 . m 0, and the age is t = 2.8 × 106 yr. NSV 18773 is a visual binary with components V A = 9 . m 9 and V B = 10 . m 3 separated by 0 . " 8. The third light (L 3 = 0.61) that we found by analyzing the light curves shows that the eclipsing binary is the system’s fainter component B. We confirmed the rapid apsidal motion of the star detected by Otero and Wils (2006) and refined its observed period: U obs = 150 ± 6 yr. Our photometric elements and physical parameters allowed the apsidal parameter $\bar k_2^{obs} = 0.0135(14)$ , which reflects the density distribution along the radii of the component stars, to be determined. Within the error limits, the derived parameter agrees with its theoretically expected value, $\bar k_2^{th} = 0.0119(8)$ , from current evolutionary models of stars of the corresponding masses and ages.  相似文献   

9.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

10.
  1. The exotic system H 3 ++ (which does not exist without magnetic field) exists in strong magnetic fields:
    1. In triangular configuration for B≈108–1011?G (under specific external conditions)
    2. In linear configuration for B>1010?G
  2. In the linear configuration the positive z-parity states 1σ g , 1π u , 1δ g are bound states
  3. In the linear configuration the negative z-parity states 1σ u , 1π g , 1δ u are repulsive states
  4. The H 3 ++ molecular ion is the most bound one-electron system made from protons at B>3×1013?G
Possible application: The H 3 ++ molecular ion may appear as a component of a neutron star atmosphere under a strong surface magnetic field B=1012–1013?G.  相似文献   

11.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

12.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

13.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

14.
We present the results of spectroscopic and photometric observations for three hot southern-hemisphere post-AGB objects, Hen 3-1347 = IRAS 17074-1845, Hen 3-1428 = IRAS 17311-4924, and LSS 4634 = IRAS 18023-3409. In the spectrograms taken with the 1.9-m telescope of the South African Astronomical Observatory (SAAO) in 2012, we have measured the equivalent widths of the most prominent spectral lines. Comparison of the new data with those published previously points to a change in the spectra of Hen 3-1428 and LSS 4634 in the last 20 years. Based on ASAS data, we have detected rapid photometric variability in all three stars with an amplitude up to 0 · m 3-0 · m 4 in the V band. A similarity between the patterns of variability for the sample stars and other hot protoplanetary nebulae is pointed out. We present the results of UBV observations for Hen 3-1347, according to which the star undergoes rapid irregular brightness variations with maximum amplitudes ΔV = 0 · m 25, ΔB = 0 · m 25, and ΔU = 0 · m 30 and shows color-magnitude correlations. Based on archival data, we have traced the photometric history of the stars over more than 100 years. Hen 3-1347 and LSS 4634 have exhibited a significant fading on a long time scale. The revealed brightness and spectrum variations in the stars, along with evidence for their enhanced mass, may be indicative of their rapid post-AGB evolution.  相似文献   

15.
In previous publications the author has constructed a long-periodic solution of the problem of the motion of the Trojan asteroids, treated as the case of 1:1 resonance in the restricted problem of three bodies. The recent progress reported here is summarized under three headings:
  1. The nature on the long-periodic family of orbits is re-examined in the light of the results of the numerical integrations carried out by Deprit and Henrard (1970). In the vicinity of the critical divisor $$D_k \equiv \omega _1 - k\omega _2 ,$$ not accessible to our solution, the family is interrupted by bifurcations and shortperiodic bridges. Parametrized by the normalized Jacobi constant α2, our family may, accordingly, be defined as the intersection of admissible intervals, in the form $$L = \mathop \cap \limits_j \left\{ {\left| {\alpha - \alpha _j } \right| > \varepsilon _j } \right\};j = k,k + 1, \ldots \infty .$$ Here, {αj(m)} is the sequence of the critical αj corresponding to the exactj: 1 commensurability between the characteristic frequencies ω1 and ω2 for a given value of the mass parameterm. Inasmuch as the ‘critical’ intervals |α?αj|<εj can be shown to be disjoint, it follows that, despite the clustering of the sequence {αj} at α=1, asj→∞, the family extends into the vicinity of the separatrix α=1, which terminates the ‘tadpole’ branch of the family.
  2. Our analysis of the epicyclic terms of the solution, carrying the critical divisorD k , supports the Deprit and Henrard refutation of the E. W. Brown conjecture (1911) regarding the termination of the tadpole branch at the Lagrangian pointL 3. However, the conjecture may be revived in a refined form. “The separatrix α=1 of the tadpole branch spirals asymptotically toward a limit cycle centered onL 3.”
  3. The periodT(α,m) of the libration in the mean synodic longitude λ in the range $$\lambda _1 \leqslant \lambda \leqslant \lambda _2$$ is given by a hyperelliptic integral. This integral is formally expanded in a power series inm and α2 or \(\beta \equiv \sqrt {1 - \alpha ^2 }\) .
The large amplitude of the libration, peculiar to our solution, is made possible by the mode of the expansion of the disturbing functionR. Rather than expanding about Lagrangian pointL 4, with the coordinatesr=1, θ=π/3, we have expandedR about the circler=1. This procedure is equivalent to analytic continuation, for it replaces the circle of convergence centered atL 4 by an annulus |r?1|<ε with 0≤θ<2π.  相似文献   

16.
The scattered radiation field in homogeneously absorbing and isotropically scattering spherical layers is studied, when the isotropic point source is at the centre. A complete frequency redistribution is assumed. It is shown, that on the inner boundaryr=R 0 of the cavity, whenR 0?1 (all radii are expressed in the path lengths), the source functionB~R 0 ?1 ln ?1/2 R 0 for the Doppler profile andB~R 0 ?3/2 for the Voigt and Lorentz profiles. The asymptotical behaviour of the source functionB(r) significantly differs from the analogous behaviour of solution for an infinite medium.  相似文献   

17.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

18.
A general algorithm for the determination ofT j (n) andZ j *(n) is deduced. This algorithm is obtained from the general solution of non-homogeneous linear differential equations with variable coefficients in their matricial form. To do this a new functionX *(n) associated withZ *(n) is introduced. Then it is possible to calculateZ *(n) such that it contains secular or mixed secular terms and soT (n) is free from these terms.  相似文献   

19.
Hydrostatic models of sunspot penumbra and umbra are evaluated using Bode's tables of monochromatic absorption coefficients andT-τ-relations given by Makita and Morimoto (1960) and by Zwaan (1965). These models are placed side by side to simulate a complete sunspot corresponding to an area of 480×10?6 of a hemisphere. Intensity profiles are evaluated for aspect angles up to 85° and compared to observations. The primary aim was to study the influence of spot transparency, which is closely related to the gas-pressure, on the Wilson-effect and on other changes in the intensity profile that appear close to the solar limb. The gas-pressures at the zero-level in the geometrical depth (z=0) corresponding to optical depth, τ=10?3, both in the umbra,P 0 u , and in the penumbra,P 0 p , appear as adjustable parameters. When curvature is taken into account, the Wilson-effect cannot be reproduced without depressing the zero-point in the geometrical scale in the umbra relative to the same layer in the photosphere. A depression of 400 km will give a reasonably good fit for the Wilson-effect providedP 0 u <P 0 P <P 0 Ph . The model we found to give the best fit is based on Makita and Morimoto'sT-τ-relations withP 0 P =3200 andP 0 u =800. We have here chosen an umbra pressure that gives a small limb-side intensity peak at the penumbra border, assuming that the bright points described by Bray and Loughhead (1964) may be interpreted in terms of a transparency effect. Other parameters measured by Wilson and Cannon (1968) are evaluated, and for some a good agreement was obtained, while for others only a qualitative effect in the same direction could be found. Surfaces along which the optical path is constant (isodiaphanous surfaces) are functions of aspect angle and well suited for visualizing the transparency in spots. It is shown how for a wide range of models the isodiaphanous surfaces get asymmetric close to the limb. This has consequences for the interpretation of the Evershed-effect. In fact, under certain conditions, a ‘masking’ effect may take place because the greater transparency in the penumbra will allow observations of a deep laying flow, which will not be visible through the more opaque photosphere. Due to the asymmetry this effect is different on the limb side and the center side. We also found the spot to show an apparent displacement away from the limb, which at a heliocentric distance of 85° amounts to about one second of arc. Intensity profiles in the near infrared at 8206 Å and at 16482 Å are evaluated, and the importance of observations in these spectral regions is emphasized.  相似文献   

20.
The absorption spectrum of Sii in the wavelength region 1500–1900 Å has been photographed at high resolution. The silicon vapour was produced in a 122 cm long King furnace at 1800–2300°C. Forty-two Rydberg series have been observed from the ground state terms 3p 2 3 P and1 D to terms associated with the 3pns and 3pnd configurations. All of the series from these configurations withJ<4 have been extended with the 3pnd 3 D 3 o levels reachingn=56. Numerous perturbations have been observed. This laboratory work has provided the basis for extending the identification of silicon lines in the solar spectrum. Nearly all lines found in the laboratory spectrum are also found in rocket spectrograms of the solar chromosphere. More than 300 lines have been attributed to Sii. The excellent correlation between laboratory and solar Sii lines will be illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号