首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water resources systems are associated with a variety of complexities and uncertainties due to socio-economic and hydro-environmental impacts. Such complexities and uncertainties lead to challenges in evaluating the water resources management alternatives and the associated risks. In this study, the factorial analysis and fuzzy random value-at-risk are incorporated into a two-stage stochastic programming framework, leading to a factorial-based two-stage programming with fuzzy random value-at-risk (FTSPF). The proposed FTSPF approach aims to reveal the impacts of uncertainty parameters on water resources management strategies and the corresponding risks. In detail, fuzzy random value-at-risk is to reflect the potential risk about financial cost under dual uncertainties, while a multi-level factorial design approach is used to reveal the interaction between feasibility degrees and risk levels, as well as the relationships (including curvilinear relationship) between these factors and the responses. The application of water resources system planning makes it possible to balance the satisfaction of system benefit, the risk levels of penalty and the feasibility degrees of constraints. The results indicate that decision makers would pay more attention to the tradeoffs between the system benefit and feasibility degree, and the water allocation for agricultural section contributes most to control the financial loss of water. Moreover, FTSPF can generate a higher system benefit and more alternatives under various risk levels. Therefore, FTSPF could provide more useful information for enabling water managers to identify desired policies with maximized system benefit under different system-feasibility degrees and risk levels.  相似文献   

2.
In this research, approaches of interval mathematical programming, two-stage stochastic programming and conditional value-at-risk (CVaR) are incorporated within a general modeling framework, leading to an interval-parameter mean-CVaR two-stage stochastic programming (IMTSP). The developed method has several advantages: (i) it can be used to deal with uncertainties presented as interval numbers and probability distributions, (ii) its objective function simultaneously takes expected cost and system risk into consideration, thus, it is useful for helping decision makers analyze the trade-offs between cost and risk, and (iii) it can be used for supporting quantitatively evaluating the right tail of distributions of waste generation rate, which can better quantify the system risk. The IMTSP model is applied to the long-term planning of municipal solid waste management system in the City of Regina, Canada. The results indicate that IMTSP performs better in its capability of generating a series of waste management patterns under different risk-aversion levels, and also providing supports for decision makers in identifying desired waste flow strategies, considering balance between system economy and environmental quality.  相似文献   

3.
In this study, a two-stage fuzzy chance-constrained programming (TFCCP) approach is developed for water resources management under dual uncertainties. The concept of distribution with fuzzy probability (DFP) is presented as an extended form for expressing uncertainties. It is expressed as dual uncertainties with both stochastic and fuzzy characteristics. As an improvement upon the conventional inexact linear programming for handling uncertainties in the objective function and constraints, TFCCP has advantages in uncertainty reflection and policy analysis, especially when the input parameters are provided as fuzzy sets, probability distributions and DFPs. TFCCP integrates the two-stage stochastic programming (TSP) and fuzzy chance-constrained programming within a general optimization framework. TFCCP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. TFCCP is applied to a water resources management system with three users. Solutions from TFCCP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions were generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of stream flows, α-cut levels and fuzzy dominance indices.  相似文献   

4.
Factorial two-stage stochastic programming for water resources management   总被引:3,自引:3,他引:0  
This study presents a factorial two-stage stochastic programming (FTSP) approach for supporting water resource management under uncertainty. FTSP is developed through the integration of factorial analysis and two-stage stochastic programming (TSP) methods into a general modeling framework. It can handle uncertainties expressed as probability distributions and interval numbers. This approach has two advantages in comparison to conventional inexact TSP methods. Firstly, FTSP inherits merits of conventional inexact two-stage optimization approaches. Secondly, it can provide detailed effects of uncertain parameters and their interactions on the system performance. The developed FTSP method is applied to a hypothetical case study of water resources systems analysis. The results indicate that significant factors and their interactions can be identified. They can be further analyzed for generating water allocation decision alternatives in municipal, industrial and agricultural sectors. Reasonable water allocation schemes can thus be formulated based on the resulting information of detailed effects from various impact factors and their interactions. Consequently, maximized net system benefit can be achieved.  相似文献   

5.
A standard lower-side attainment values based inexact fuzzy two-stage programming (SLA-IFTSP) approach is proposed for supporting multi-water resources management under multi-uncertainties. The method improves upon the existing inexact two-stage stochastic programming by the introduction of a standard average lower-side attainment values based fuzzy linear programming. Multi-uncertainties such as intervals, probabilistic and/or possibilistic distributions and their combinations in water resources management can be directly communicated into the water allocation process. The risk of infeasibility caused by the random water availabilities can be analyzed by imposing economic penalties when the designed water allocations would not be satisfied after the occurrence of random seasonal flows. Based on the standard average lower-side attainment index, the fuzzy random relationships representing various subjective judgments in the model can be transformed into corresponding deterministic ones without additional constraints, and thus guarantee a higher computational efficiency. A hypothetical case regarding two-source water resources management is adopted for demonstrating its applicability. Reasonable solutions have been generated. They provide desired water allocations with maximized system benefit under different water availability levels. The solutions of intervals with different probabilities can be used for generating decision alternatives. Comparisons between the solutions from SLA-IFTSP and those from ITSP are also undertaken. They show that SLA-IFTSP can generate more reasonable water allocation patterns with higher net system benefits than ITSP.  相似文献   

6.
This study introduces a hybrid optimization approach for flood management under multiple uncertainties. An inexact two-stage integer programming (ITIP) model and its dual formation are developed by integrating the concepts of mixed-integer and interval-parameter programming techniques into a general framework of two-stage stochastic programming. The proposed approach provides a linkage to pre-defined management policies, deals with capacity-expansion planning issues, and reflects various uncertainties expressed as probability distributions and discrete intervals for a flood management system. Penalties are imposed when the policies are violated. The marginal costs are determined based on dual formulation of the ITIP model, and their effects on the optimal solutions are investigated. The developed model is applied to a case study of flood management. The solutions of binary variables represent the decisions of flood-diversion–capacity expansion within a multi-region, multi-flow-level, and multi-option context. The solutions of continuous variables are related to decisions of flood diversion toward different regions. The solutions of dual variables indicate the decisions of marginal costs associated with the resources of regions’ capacity, water availability, and allowable diversions. The results show that the proposed approach could obtain reliable solutions and adequately support decision making in flood management.  相似文献   

7.
In this study, a fuzzy-queue (FQ)-based inexact stochastic quadratic programming (SQP) method is developed through coupling FQ technique with inexact SQP. FQ-SQP improves upon the existing stochastic programming methods by considering the effects of queuing phenomenon during the water resources allocation process. FQ-SQP cannot only handle uncertainties expressed as interval values, random variables, and fuzzy sets, but also tackle nonlinearity in the objective function; more importantly, it can reflect the effects of FQ on water resources allocation and system benefit. The FQ-SQP model is applied to a case study of planning water resources management, where FM/FM/1 (fuzzy exponential interarrival time, fuzzy exponential service time, and one server) queue is incorporated within the SQP modeling framework. Based on α-cut analysis technique, interval solutions with fuzzy arrival and service rates have been generated, which result in different water resources allocation patterns as well as changed waiting water amounts and system benefits. Results indicate that consideration of queuing problem impacts on water resources allocation can provide more useful information for decision makers and gain in-depth insights into the effects of queuing problems for water resources allocation.  相似文献   

8.
An inexact double-sided fuzzy chance-constrained programming (IDFCCP) method was developed in this study and applied to an agricultural effluent control management problem. IDFCCP was formulated through incorporating interval linear programming (ILP) into a double-sided fuzzy chance-constrained programming (DFCCP) framework, and could be used to deal with uncertainties expressed as not only possibility distributions associated with both left- and right-hand-side components of constraints but also discrete intervals in the objective function. The study results indicated that IDFCCP allowed violation of system constraints at specified confidence levels, where each confidence level consisted of two reliability scenarios. This could lead to model solutions with high system benefits under acceptable risk magnitudes. Furthermore, the introduction of ILP allowed uncertain information presented as discrete intervals to be communicated into the optimization process, such that a variety of decision alternatives can be generated by adjusting the decision-variable values within their intervals. The proposed model could help decision makers establish various production patterns with cost-effective water quality management schemes under complex uncertainties, and gain in-depth insights into the trade-offs between system economy and reliability.  相似文献   

9.
In this study we propose a factorial fuzzy two-stage stochastic programming (FFTSP) approach to support water resources management under dual uncertainties. The dual uncertainties in terms of fuzziness in modeling parameters and variability of α-cut levels are taken into account. As different α-cut levels are assigned to each fuzzy parameter (instead of an identical α-cut level), the effects of α-cut levels on fuzzy parameters can be considered. Factorial analysis method is integrated with fuzzy vertex method to tackle the interactive effects of fuzzy parameters within a two-stage stochastic programming framework. The effects of the interactions among fuzzy parameters under various α-cut level combinations can be examined. The FFTSP approach is applied to a water resources management case to demonstrate its applicability. The results show that this approach can not only give various optimized solutions according to decision makers’ confidence levels but also provide in-depth analyses for the effects of fuzzy parameters and their interactions on the solutions. In addition, the results show that the effects of diverse α-cut combinations should not be disregarded because the results may differ under some specific α-cut combinations. The dual sequential factorial analyses embedded in the FFTSP approach guarantee most variations in a system can be analyzed. Therefore water managers are able to gain sufficient knowledge to make robust decisions under uncertainty.  相似文献   

10.
Environmental and ecological issues caused by water resources crisis have brought enormous challenges to the sustainable development of water-deficient area. Water resources allocation management balancing the relationship between the social-economic development and the ecological environment has become a hot topic in recent years. In this paper, an inexact fuzzy chance-constrained programming (IFCCP) approach is proposed for regional water resource allocation optimization with the aim of promoting the harmonious development of the social economic and the ecological environment, improving water utilization efficiency, and realizing water resources consumption control under uncertainties. The method is incorporated with interval parameter programming, fuzzy programming, and chance-constrained programming, for handling system uncertainties and balancing the optimal objectives with the risk of violating system constraints. Under this framework, an IFCCP model for water resources allocation management was successfully formulated and applied to a typical water-deficit area, Tianjin, China, for obtaining a better water resources plan among multiple users under resources and environmental limitation. Different total water consumption control policies are designed for assessing regional water allocation schemes. The results indicated that the gap of supply and demand will only be solved by foreign water, the transferred water from Luan River and Changjiang River would still be the main supplier in planning horizon. Moreover, the strict total water consumption control policy would guarantee the water requirement of ecological environment, lead to changes in the structure of water supply, actively guide on water conservation, and promote the large-scale utilization of desalted water and recycle water.  相似文献   

11.
In this study, a risk aversion based interval stochastic programming (RAIS) method is proposed through integrating interval multistage stochastic programming and conditional value at risk (CVaR) measure for tackling uncertainties expressed as probability distributions and intervals within a multistage context. The RAIS method can reflect dynamic features of the system conditions through transactions at discrete points in time over the planning horizon. Using the CVaR measure, RAIS can effectively reflect system risk resulted from random parameters. When random events are occurred, the adjustable alternatives can be achieved by setting desired targets according to the CVaR, which could make the revised decisions to minimize the economic penalties. Then, the RAIS method is applied to planning agricultural water management in the Zhangweinan River Basin that is plagued by drought due to serious water scarcity. A set of decision alternatives with different combinations of risk levels employed to the objective function and constraints are generated for planning water resources allocation. The results can not only help decision makers examine potential interactions between risks under uncertainty, but also help generate desired policies for agricultural water management with a maximized payoff and a minimized loss.  相似文献   

12.
Risk assessment of agricultural irrigation water under interval functions   总被引:2,自引:2,他引:0  
In recent years, water shortages and unreliable water supplies have been considered as major barriers to agricultural irrigation water management in China, which are threatening human health, impairing prospects for agriculture and jeopardizing survival of ecosystems. Therefore, effective and efficient risk assessment of agricultural irrigation water management is desired. In this study, an inexact full-infinite two-stage stochastic programming (IFTSP) method is developed. It incorporates the concepts of interval-parameter programming and full-infinite programming within a two-stage stochastic programming framework. IFTSP can explicitly address uncertainties presented as crisp intervals, probability distributions and functional intervals. The developed model is then applied to Zhangweinan river basin for demonstrating its applicability. Results from the case study indicate that compromise solutions have been obtained. They provide the desired agricultural irrigation water-supply schemes, which are related to a variety of tradeoffs between conflicting economic benefits and associated penalties attributed to the violation of predefined policies. The solutions can be used for generating decision alternatives and thus help decision makers to identify desired agricultural irrigation targets with maximized system benefit and minimized system-failure risk. Decision makers can adjust the existing agricultural irrigation patterns, and coordinate the conflict interactions among economic benefit, system efficiency, and agricultural irrigation under uncertainty.  相似文献   

13.
In this study, an interval-parameter multi-stage stochastic linear programming (IMSLP) method has been developed for water resources decision making under uncertainty. The IMSLP is a hybrid methodology of inexact optimization and multi-stage stochastic programming. It has three major advantages in comparison to the other optimization techniques. Firstly, it extends upon the existing multi-stage stochastic programming method by allowing uncertainties expressed as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. Secondly, penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised water-allocation targets are violated. Thirdly, it cannot only handle uncertainties through constructing a set of scenarios that is representative for the universe of possible outcomes, but also reflect dynamic features of the system conditions through transactions at discrete points in time over the planning horizon. The developed IMSLP method is applied to a hypothetical case study of water resources management. The results are helpful for water resources managers in not only making decisions of water allocation but also gaining insight into the tradeoffs between environmental and economic objectives.  相似文献   

14.
Incorporation of uncertainties within an urban water supply management system has been a challenging topic for many years. In this study, an acceptability-index-based two-step interval programming (AITIP) model was developed for supporting urban water supply analysis under uncertainty. AITIP improved upon the traditional two-step interval programming (TIP) through incorporating the acceptability level of constraints violation into the optimization framework. A four-layer urban water supply system, including water sources, treatment facilities, reservoirs, and consuming zones, was used to demonstrate the applicability of proposed method. The results indicated that an AITIP model was valuable to help understand the effects of uncertainties related to cost, constraints and decision maker’s judgment in the water supply network, and capable of assisting urban water managers gain an in-depth insight into the tradeoffs between system cost and constraints-violation risk. Compared with TIP, the solutions from AITIP were of lower degree of uncertainty, making it more reliable to identify effective water supply patterns by adjusting decision variable values within their solution intervals. The study is useful in helping urban water managers to identify cost-effective management schemes in light of uncertainties in hydrology, environment, and decisions. The proposed optimization approach is expected to be applicable for a wide variety of water resources management problems.  相似文献   

15.
A fuzzy chance-constrained linear fractional programming method was developed for agricultural water resources management under multiple uncertainties. This approach improved upon the previous programming methods, and could reflect the ratio objective function and multiple uncertainties expressed as probability distributions, fuzzy sets, and their combinations. The proposed approach is applied to an agricultural water resources management system where many crops are considered under different precipitation years. Through the scenarios analyses, the multiple alternatives are presented. The solutions show that it is applicable to practical problems to address the crop water allocation under the precipitation variation and sustainable development with ratio objective function of the benefit and the irrigation amount. It also provides bases for identifying desired agriculture water resources management plans with reasonable benefit and irrigation schedules under crops.  相似文献   

16.
An inexact fuzzy-random-chance-constrained programming model (IFRCCMM) was developed for supporting regional air quality management under uncertainty. IFRCCMM was formulated through integrating interval linear programming within fuzzy-random-chance-constrained programming framework. It could deal with parameter uncertainties expressed as not only fuzzy random variables but also discrete intervals. Based on the stochastic and fuzzy chance-constrained programming algorithms, IFRCCMM was solved when constraints was satisfied under different satisfaction and violation levels of constraints, leading to interval solutions with different risk and cost implications. The proposed model was applied to a regional air quality management problem for demonstration. The obtained results indicated that the proposed model could effectively reflect uncertain components within air quality management system through employing multiple uncertainty-characterization techniques (in random, fuzzy and interval forms), and help decision makers analyze trade-offs between system economy and reliability. In fact, many types of solutions (i.e. conservative solutions with lower risks and optimistic solutions with higher risks) provided by IFRCCMM were suitable for local decision makers to make more applicable decision schemes according to their understanding and preference about the risk and economy. In addition, the modeling philosophy is general and applicable to many other environmental problems that may be complicated with multiple forms of uncertainties.  相似文献   

17.
Due to rapid growth of population and development of economy, water resources allocation problems have aroused wide concern. Therefore, optimization of water resources systems is complex and uncertain, which is a severe challenge faced by water managers. In this paper, a factorial multi-stage stochastic programming with chance constraints approach is developed to deal with the issues of water-resources allocation under uncertainty and risk as well as their interactions. It can deal with uncertainties described as both interval numbers and probability distributions, and can also support the risk assessment within a multistage context. The solutions associated with different risk levels of constraint violation can be obtained, which can help characterize the relationship between the economic objective and the system risk. The inherent interactions between factors at different levels and their effects on total net benefits can be revealed through the analysis of multi-parameter interactions.  相似文献   

18.
Rapid population growth and economy development have led to increasing reliance on water resources. It is even aggravated for agricultural irrigation systems where more water is necessary to support the increasing population. In this study, an inexact programming method based on two-stage stochastic programming and interval-parameter programming is developed to obtain optimal water-allocation strategies for agricultural irrigation systems. It is capable of handling such problems where two-stage decisions need to be suggested under random- and interval-parameter inputs. An interactive solving procedure derived from conventional interval-parameter programming makes it possible for the impact of lower and upper bounds of interval inputs to be well reflected in the resulting solutions. An agricultural irrigation management problem is then provided to demonstrate the applicability, and reasonable solutions are obtained. Compared to the solutions from a representative interval-parameter programming model where only one decision-stage exists, the interval of optimized objective-function value is narrow, indicating more alternatives could be provided when water-allocation targets are rather high. However, chances of obtaining more benefits exist in association with a risk of paying more penalties; such a relationship becomes apparent when the variation of water availability is much intensive.  相似文献   

19.
In this study, an interval parameter multistage joint-probability programming (IMJP) approach has been developed to deal with water resources allocation under uncertainty. The IMJP can be used not only to deal with uncertainties in terms of joint-probability and intervals, but also to examine the risk of violating joint probabilistic constraints in the context of multistage. The proposed model can handle the economic expenditure caused by regional water shortage and flood control. The model can also reflect the related dynamic changes in the multi-stage cases and the system safety under uncertainty. The developed method is applied to a case study of water resources allocation in Shandong, China, under multistage, multi-reservoir and multi-industry. The violating reservoir constraints are addressed in terms of joint-probability. Different risk levels of constraint lead to different planning. The obtained results can help water resources managers to identify desired system designs under various economic, environment and system reliability scenarios.  相似文献   

20.
Optimization models play an important role in long-term hydroelectric resources planning. The effectiveness of an optimization model, however, depends on its capability of dealing with uncertainties. This study presents a multistage interval-stochastic programming model for long-term hydropower planning, in which uncertainties are reflected as randomness and intervals. The model is developed based on interval programming technique and recourse-based multistage stochastic programming and using the expected value of long-term hydroelectric profit as the objective function. A solution method of the developed model is also presented, which is based on a decomposition method by partitioning the multistage interval-stochastic program into two-stage stochastic programming sub-problems in each scenario-tree node. A hypothetical case study is used to demonstrate the developed model and its solution method. Modeling results demonstrates the computationally effectiveness of the solution method and reveal the applicability of the developed model for long term planning of hydroelectric resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号