首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Density constraints on the formation of the continental Moho and crust   总被引:1,自引:0,他引:1  
The densities of mantle magmas such as MORB-like tholeiites, picrites, and komatiites at 10 kilobars are greater than densities for diorites, quartz diorites, granodiorites, and granites which dominate the continental crust. Because of these density relations primary magmas from the mantle will tend to underplate the base of the continental crust. Magmas ranging in composition from tholeiites which are more evolved than MORB to andesite can have densities which are less than rocks of the continental crust at 10 kilobars, particularly if they have high water contents. The continental crust can thus be a density filter through which only evolved magmas containing H2O may pass. This explains why primary magmas from the mantle such as the picrites are so rare. Both the over-accretion (i.e., Moho penetration) and the under-accretion (i.e., Moho underplating) of magmas can readily explain complexities in the lithological characteristics of the continental Moho and lower crust. Underplating of the continental crust by dense magmas may perturb the geotherm to values which are characteristic of those in granulite to greenschist facies metamorphic sequences in orogenic belts. An Archean continental crust floating on top of a magma flood or ocean of tholeiite to komatiite could have undergone a major cleansing process; dense blocks of peridotite, greenstone, and high density sediments such as iron formation could have been returned to the mantle, granites sweated to high crustal levels, and a high grade felsic basement residue established.  相似文献   

4.
Geochemical analyses were interpreted on the dominant lithological units and on a deep crustal fluid from the Continental Deep Drilling Project (KTB) Pilot Hole, situated at the western margin of the Variscan Bohemian Massif. The biotite gneiss (from 384 m depth) shows a rare earth element pattern very similar to the European shale composite with Nd model ages of 940 Ma (CHUR) and 1.4 Ga (DM). The lamprophyre dike in the upper profile (1549 m), a nepheline and olivine normative basalt, is geochemically and isotopically similar to rocks from the Tertiary Central European Volcanic Province. The lower metabasite sequence (3575–4000 m), with an intrusion age of approximately 500 Ma, is made up primarily of highly metamorphosed subalkalic olivine basalts. The geochemical characteristics of the metabasites are a (La/Yb)N of 5–10, an La concentration of 20–50 times chondrite as well as (87Sr/86Sr)i of 0.7035–0.7038 and Nd(T) of 4–6. These values suggest a depleted mantle source for the igneous precursors, evolving by assimilation-fractional crystallization processes with up to 25% of upper crust into the ultramafic, basaltic, and intermediate rock types of the metabasite sequence. The strong geochemical and chronological similarities between the KTB metabasites and rocks from the Münchberg Massif suggest that these units belong to the same lithological complex. The high salinity as well as the radiogenic 87Sr/86Sr ratio of 0.709413 in the KTB fluid from 4000 m depth might be the result of migrating fluids reacting with the regional Permo-Mesozoic evaporite deposits, followed by extensive Sr isotopic exchange with the upper crust.  相似文献   

5.
According to this paper, the juvenile crust of the Chingiz Range Caledonides (Eastern Kazakhstan) was formed due to suprasubduction magmatism within the Early Paleozoic island arcs developed on the oceanic crust during the Cambrian–Early Ordovician and on the transitional crust during the Middle–Late Ordovician, as well as to the attachment to the arcs of accretionary complexes composed of various oceanic structures. Nd isotopic compositions of the rocks in all island-arc complexes are very similar and primitive (εNd(t) from +4.0 to +7.0) and point to a short crustal prehistory. Further increase in the mass and thickness of the crust of the Chingiz Range Caledonides was mainly due to reworking of island-arc complexes in the basement of the Middle and Late Paleozoic volcanoplutonic belts expressed by the emplacement of abundant granitoids. All Middle and Late Paleozoic granitoids have high positive values of εNd(t) (at least +4), which are slightly different from Nd isotopic compositions of the rocks in the Lower Paleozoic island-arc complexes. Granitoids are characterized by uniform Nd isotopic compositions (<2–3 ε units for granites with a similar age), and thus we can consider the Chingiz Range as the region of the Caledonian isotope province with an isotopically uniform structure of the continental crust.  相似文献   

6.
Formation of deep basins on continental crust in fold belts is often explained by stretching. This mechanism inevitably produces large deformations in the upper crust. No deformations typical of significant stretching were revealed in the predominant part of deep basins on continental crust in the Alpine Belt. This means that these basins were not produced by stretching. Most basins were formed during a short period of time of a few million years. The short duration of the subsidences eliminates thermal relaxation as the mechanism. The space and time relationships between the subsidence and orogeny and the profile of the basin floor exclude thrust loading as a cause of formation for practically all large basins. Gabbro to eclogite transformation is suggested as a mechanism of rapid subsidence. This occurs under the upwelling of hydrous asthenosphere at moderate temperature to the base of the crust. Eclogite sinking into the mantle results in a strong attenuation of the crust and lithosphere, which permits intense subsequent folding. The major part of deep basins in continental crust that formed by rapid subsidence was intensely shortened in the Alpine Belt. Significant crustal shortening did not spread over the cratonic lithosphere.  相似文献   

7.
Doklady Earth Sciences - Within the Kokchetav massif (Northern Kazakhstan), Mesoproterozoic granites and acid volcanics are widespread: these are the youngest Precambrian igneous rocks forming...  相似文献   

8.
1IntroductionThe northern segment of the South LancangjiangBelt refers to the terrain about200km east of theYunxian-Lingcang granite in the South LancangjiangBelt(Fig.1).During the seventh Five-Year Plan peri-od,Mo Xuanxue et al.(1993)undertook the resear…  相似文献   

9.
The Li isotopic composition of the upper continental crust is estimated from the analyses of well-characterized shales, loess, granites and upper crustal composites (51 samples in total) from North America, China, Europe, Australia and New Zealand. Correlations between Li, δ7Li, and chemical weathering (as measured by the Chemical Index of Alteration (CIA)), and δ7Li and the clay content of shales (as measured by Al2O3/SiO2), reflect uptake of heavy Li from the hydrosphere by clays. S-type granites from the Lachlan fold belt (-1.1 to -1.4‰) have δ7Li indistinguishable from their associated sedimentary rocks (-0.7 to 1.2‰), and show no variation in δ7Li throughout the differentiation sequence, suggesting that isotopic fractionation during crustal anatexis and subsequent differentiation is less than analytical uncertainty (±1‰, 2σ). The isotopically light compositions for both I- and S-type granites from the Lachlan fold belt (-2.5 to + 2.7 ‰) and loess from around the world (-3.1 to + 4.5‰) reflect the influence of weathering in their source regions. Collectively, these lithologies possess a limited range of Li isotopic compositions (δ7Li of −5‰ to + 5‰), with an average (δ7Li of 0 ± 2‰ at 1σ) that is representative of the average upper continental crust. Thus, the Li isotopic composition of the upper continental crust is lighter than the average upper mantle (δ7Li of + 4 ± 2‰), reflecting the influence of weathering on the upper crustal composition. The concentration of Li in the upper continental crust is estimated to be 35 ± 11 ppm (2σ), based on the average loess composition and correlations between insoluble elements (Ti, Nb, Ta, Ga and Al2O3, Th and HREE) and Li in shales. This value is somewhat higher than previous estimates (∼20 ppm), but is probably indistinguishable when uncertainties in the latter are accounted for.  相似文献   

10.
Nd model ages(TDM) of the Pre-Mesozoic crustal rock samples from Southeast China range from 1.2 to 3.5Ga.Two age peaks of 1.4Ga and 1.8 Ga are observed in the histogram of TDM model ages.Available U-Pb zircon inheritance ages are concentrated around 1.2-1.4Ga,1.8Ga and 2.5Ga,respectively.The combined use of Sm-Nd and U-Pb zircon inheritance ages suggests that the formation of the Precambrian curst is of episodic character.The oldest crustal nucleus may have been formed during the Late Archean(2.5Ga or older?).A rapid production of the crust took place 1.8 Ga ago,consistent with the global crust formation event at 1.7-1.9Ga.Another important episode of the addition of juvenile crustal material from the mantle in Southeast China took place 1.2-1.4Ga ago,during which the pre-existing crust was strongly reworked and/or remelted.  相似文献   

11.
12.
Eocene is a critical time for the elevation of Tibetan Plateau and global climate change, and previous studies suggested that the Eocene elevation was caused by intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block. This paper reports zircon U–Pb age and geochemistry of the Eocene volcanic rocks from the Zuerkenwula mountain area in the northern part of Qiangtang block, and proposes that both slab break-off of the Neo-Tethys oceanic slab along the Bangong–Nujiang suture and intra-continental subduction of the Songpan–Garze block beneath the Qiangtang block caused the extensive partial melting of lithospheric mantle and subducted Songpan–Garze continental crust, which resulted in the significant elevation of the Tibetan Plateau. The volcanic rocks have LA-ICP MS U–Pb zircon age of 40.25 ± 0.15 Ma (MSWD = 2.1, 2σ), which is contemporaneous with the Eocene eclogites in the Great Himalayan and K-rich lavas in the southeastern Tibet. They display some adakitic characteristics with SiO2 = 57.44 to 68.72%, TiO2 = 0.38 to 0.81%, Na2O = 2.89 to 4.35%, K2O = 2.77 to 4.48%, Al2O3 = 13.92 to 18.22%, A/CNK = 0.69 to 1.03, MgO = 0.27 to 5.86% with Mg# ranging from 13.2 to 72.0, strongly depleted in heavy rare earth elements (HREEs) (Yb = 0.92 to 1.51 ppm and Y = 10.1 to 24.1 ppm), in combination with their positive Sr anomalies, high Sr/Y ratios and no significant Eu anomalies, which suggest a garnet-in and plagioclase-free source residue. These volcanic rocks can be divided into high-Mg# (> 45) and low-Mg# (< 45) groups. Both of the two groups share evolved Sr–Nd–Pb isotopic compositions with 87Sr/86Sr = 0.707412–0.708284; εNd(t) = ? 4.0 to ? 5.7; 206Pb/204Pb = 18.7499–18.8189, 207Pb/204Pb = 15.7189–15.7384; 208Pb/204Pb = 39.166–39.262. The geophysical data and regional geological setting suggest that the low-Mg# adakitic rocks were derived from the decompression melting of a subducted lower continental crust, when low-Mg# adakitic melts in the overlying peridotite mantle wedge captured some olivine crystals, resulting in their elevated Mg# and MgO values.  相似文献   

13.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

14.
青藏高原拉萨地块西部赛利普地区新生代火山岩依据主量元素可划分为超钾质、钾质和钙碱性系列,主要的岩石类型为粗面安山岩、粗面岩,一个超钾质岩石的40Ar-39Ar年龄为17.58Ma,指示出火山活动为中新世.超钾质、钾质和钙碱性火山岩都显示出富集LREE及LILE(Th、U)、亏损HFSE(Nb、Ta、Ti)的特征.超钾质火山岩具有较高的K2O(6.31%~8.55%)、MgO(6.75%~8.96%)、Cr(270.7×10-6~460.4×10-6)、Ni(142.3×10-6~233.9×10-6)含量,较高的(87Sr/86Sr)i(0.71883~0.72732)和较低的εNd(-14.78~-15.37),指示可能起源于一个前期亏损并经后期俯冲作用改造的富钾的方辉橄榄岩富集地幔源区.钾质火山岩具有比超钾质火山岩低的K2O、MgO、Cr、Ni含量以及高的Ba、Sr含量,初始87Sr/86Sr为0.71553~0.71628,初始143Nd/144Nd为0.51197~0.51198,在空间上与超钾质火山岩共生,可能是前者母岩浆的演化产物.钙碱性火山岩具有较高的Sr(881.7×10-6~1309.2×10-6)、Sr/Y比值(50~108)和较低的Y(12.05×10-6~18.02×10-6),明显亏损重稀土Yb(0.93×10-6~1.30×10-6),类似于典型的埃达克质岩成分特征但相对高钾,并具有相对低的(87Sr/86Sr);(0.70928~0.71374)以及高的εNd(-7.90~-10.91),指示起源于富钾增厚下地壳物质的部分熔融.区域上拉萨地块超钾质岩、钾质岩与N-S向地堑系在空间上共存、时间上相吻合,由此本文认为拉萨地块中新世钾质.超钾质岩和南北向地堑系的形成可能与中新世早期北向俯冲的印度大陆岩石圈断离有关.  相似文献   

15.
Two types of pseudotachylytes are observed in the Balmuccia peridotite of the Ivrea zone (Southern Alps, Italy). A-type pseudotachylytes correspond to previously studied occurrences and were formed under temperatures comprising between 550 and 900 °C and pressures comprising between 0.6 and 1.2 GPa. These conditions were met in the Ivrea crust between 350 and 270 Ma, suggesting that A-type pseudotachylytes were formed during Variscan tectonics or Permian transtensional tectonics. B-type pseudotachylytes post-date A-type pseudotachylytes. Textural characteristics of B-type veins suggest a formation in the upper continental crust, at depths of about 5–10 km or less. Petrological constraints indicate that the exhumation of the Ivrea crust at such shallow depths was achieved later than c.  70 Ma, thus providing a maximum age of 70 Ma for B-type veins. Pseudotachylytes appear as markers of the poly-orogenic evolution of the Alpine belt.  相似文献   

16.
长江中下游地区繁昌盆地火山岩成因:锆石Hf-O同位素制约   总被引:1,自引:1,他引:1  
繁昌盆地是长江中下游地区沿江火山盆地之一,目前针对该盆地火山岩的研究相对薄弱,因此本文选择该盆地中分村组流纹岩、赤沙组粗安岩、蝌蚪山组流纹岩为研究对象,结合本课题组前期发表的研究成果,开展锆石原位Hf-O同位素和U-Pb年代学研究,以期深入探讨繁昌盆地火山岩的岩石成因。中分村组流纹岩、赤沙组粗安岩、蝌蚪山组流纹岩的LA-ICPMS锆石U-Pb定年结果分别为132.1±1.5Ma、129.1±1.8Ma和129.5±3.3Ma。三组火山岩的εHf(t)值分别为-8.2~-5.8、-6.0~-3.4、-7.4~-2.2,δ18O值分别为6.3‰~7.9‰、7.0‰~7.8‰、6.6‰~8.2‰,从中分村组到赤沙组再到蝌蚪山组εHf(t)、δ18O值逐渐升高。综合分析表明:中分村组、赤沙组、蝌蚪山组火山岩的源区相似,它们是新元古新生地壳熔融形成的岩浆和少量的富集岩石圈地幔部分熔融形成的岩浆混合后经结晶分异形成。从148~133Ma至132~126Ma,本地区经历了俯冲带构造环境至拉张环境的转换,古太平洋板片的俯冲及后撤的转换时间在132Ma左右。  相似文献   

17.
薛怀民  董树文  马芳 《地质学报》2010,84(5):664-681
庐枞盆地内的中生代火山-潜火山岩具高钾和相对富碱为特性,属典型的橄榄玄粗岩系列。它们在地球化学上表现出明显富集Rb、Th、U、K等强不相容元素和轻稀土元素,亏损高场强元素Nb和Ta的特征。Nd、Sr同位素组成总体位于富集型的扬子克拉通岩石圈地幔的范围内或其附近,显示其母岩浆主要是由富集型地幔部分熔融形成的。火山-潜火山岩的成分变异趋势显示橄榄玄粗质幔源岩浆在高压下(斜长石稳定压力之下,1.5GPa)经历过以单斜辉石和钛铁氧化物为主的矿物分离结晶作用。低压下矿物的分离结晶作用及上地壳物质的混染则不明显。这套火山-潜火山岩的部分地球化学性质(如Ce/Yb比值)类似于大洋岛弧内的橄榄玄粗岩,可能意味着区内由于岩石圈的减薄,软流圈地幔上涌到了岩石圈相对较浅的部位,控制源区部分熔融的主要是尖晶石相地幔岩。虽然局部(如靠近郯庐断裂的盆地西缘)可能存在着明显的热侵蚀,但"突发性的"机械拆沉是区内(乃至整个长江中下游地区)岩石圈减薄的主要机制。在整个晚中生代岩石圈减薄的过程中,这两种机制可能一直相互促进着。  相似文献   

18.
Pb isotope ratios have been measured in 12 volcanic rocks from the South Sandwich Islands. The ranges are 206Pb204Pb = 18.51–18.66; 207Pb204Pb = 15.55–15.64; 208Pb204Pb = 38.42–38.64. In 207Pb204Pb-206Pb204Pb and 208Pb204Pb-206Pb204Pb correlation diagrams, the South Sandwich data plot distinctly above the fields for ocean ridge basalts, and yield trends showing apparent mixing with a sedimentary end member similar to South Atlantic pelagic sediments as reported by Chow and Patterson (1962) and this study. Armstrong and Cooper (1971) have likewise shown that volcanics from the Lesser Antilles show mixing trends with North Atlantic sediments in Pb isotope correlation diagrams. The North Atlantic sediments have distinctly higher 206Pb204Pb and 208Pb204Pb ratios compared to the South Atlantic sediments. The parallel relationships between sediments and volcanic island arc rocks of the North and South Atlantic provide strong evidence for a component of Pb from subducted sediments in the lavas of the west Atlantic basin. In contrast to these data, lavas from the Mariana Arc in the western Pacific show little or no component of Pb from pelagic sediments. The reason for the different behaviors in the two settings is speculative.  相似文献   

19.
S. Harangi 《Lithos》1994,33(4):303-321
Early Cretaceous volcanic rocks (basanite to phonolite) from the Mecsek Mountains (South Hungary) represent the products of Late Mesozoic extension-related alkaline magmatism at the southern margin of the European plate. Two mafic groups have been distinguished: ankaramite-alkali basalt and Na-basanite-phonotephrite. Phonolites could have been formed from the Na-basanitic magma by low-pressure fractionation. The major and trace element characteristics of the Mecsek basalts are similar to those of alkaline basalts of other intraplate areas and have a St. Helena-type OIB affinity. The mantle source of the Mecsek volcanics could be similar to that proposed by Wilson and Downes (1991) as one of the mantle endmembers for extension-related Tertiary-Quaternary alkaline basalts in Europe. Geochemical modelling indicates that the primary magmas of the Na-basanite series were formed by about 4% partial melting, whereas ankaramites and alkali basalts originated by about 6% partial melting of a garnet-peridotite source.  相似文献   

20.
Summary The Pitcairn hotspot, located about 60 km east of Pitcairn Island (South Pacific), consists of several active volcanoes < 500 m below sea level. The volcanic rocks from these seamounts are classified in four main rock-types: (1) picritic basalt containing Ti-bearing chromite (8–10 wt.% TiO2); (2) alkali basalt (Ti-bearing chromite with 4–6 wt.% TiO2); (3) trachyandesite containing titanomagnetite (18–22 wt.% TiO2); and sulfides, and (4) trachyte (titanomagnetite with 19–23 wt.% TiO2); The metallic oxides are zoned with decreasing Tîl02 contents from core to rim. Crystal fractionation (> 60%) is the main process responsible for differentiating these rock-types from an enriched source.Pyrrhotite and rare chalcopyrite grains in contact with pyrrhotite are observed only in the trachyandesite (3) in disseminated phenocryst clusters, usually in contact with large euhedral titanomagnetite phenocrysts. In addition, large euhedral pyrrhotite flakes, some with hexagonal habit, coat the walls of vesicles. All these pyrrhotite grains show a small range in Fe/S (0.90–0.99). The pyrrhotite in clusters precipitated earlier or simultaneously with titanomagnetite in a magmatic reservoir during crystal-liquid fractionation. Late precipitated vesicle pyrrhotite was formed by diffusion of Fe from the trachyandesitic liquid after the formation of the vesicles. Iron diffused from the glassy groundmass into the vesicle and reacted there with sulfur-bearing volatiles.
Magmatische Sulfide und Oxyde in Vulkaniten vom Pitcairn Hotspot (S-Pazifik)
Zusammenfassung Der Pitcairn Hotspot, ca. 60 km östlich von der Insel Pitcairn, besteht aus mehreren noch aktiven Vulkanen, die bis zu 500m unter dem Meeresspiegel aufragen. Die Hotspot Gesteinsproben können vier Vulkanittypen zugeordnet werden: (1) Pikritbasalt mit Ti-reichem Chromit (8–10 Gew.% TiO2); (2) Alkalibasalt (Ti-reicher Chromit, 4–6 Gew.% TiO2); (3) Trachyandesit mit Titanomagnetit (18–22 Gew.% TiO2); und Sulfiden sowie (4) Trachyt (Titanomagnetit, 19–23 Gew.% TiO2); Die Metalloxyde haben, verbunden mit abnehmendem TiO2-Gehalt, einen Zonarbau vom Kern zum Rand. Eine Kristallfraktionierung (< 60 %) ist Hauptursache für die Differenzierung der vier Vulkanittypen aus einer angereicherten Magmenquelle.Pyrrhotit und sehr wening Chalkopyrit als Kontaktphase zum Pyrrhotit sind nur im Trachyandesit (3) in Clustern mit idiomorphen Kristalleinsprenglingen im Kontakt mit Titanomagnetit gefunden worden. Weiterhin bedecken große idiomorphe Pyrrhotit plättchen, davon einige mit hexagonalem Habitus, die Wände der Gasblasen. Die Variationsbreite des Fe/S aller Pyrrhotite ist mit 0,90-0,99 gering. Die Pyrrhotite in den Clustern sind früher als oder gleichzeitig mit Titanomagnetit im Magmenreservoir während der Kristall-Schmelze Fraktionierung auskristallisiert. Die spät gebildeten Pyrrhotite in den Gasblasen sind durch einen Diffusionsprozeß von Fe aus der trachyandesitischen Schmelze entstanden. Eisen diffundierte aus der glasigen Grundmasse in die Hohlräume und reagierte dort mit Schwefel, der als volatiler Bestandteil vorlag.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号