首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

2.
The long-term industrialization and urbanization of Guangzhou city may lead to heavy metal contamination of its aquatic sediment. Nevertheless, only few studies have been published on the distribution and contamination assessment of heavy metals in this urban river sediment. Thus, the major objective of this study was to quantitatively assess contamination of heavy metals and their chemical partitioning in the sediments of the Guangzhou section of the Pearl River (GSPR). Surface sediment samples were collected at 10 sites in the main river and 12 sites in the creeks of the GSPR. The total content of Cd was determined by graphite furnace atomic adsorption spectrometry (GF-AAS), and content of Cr, Cu, Pb and Zn was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The chemical partitioning of these heavy metals in the sediments of the main river was determined by the sequential selective extraction (SSE) method. Results indicated that the average total concentrations of Cd, Cr, Pb, Cu and Zn in the sediments of the main river were 1.44, 63.7, 95.5, 253.6 and 370.0 mg/kg, respectively, whereas they were 2.10, 125.5, 110.1, 433.7 and 401.9 mg/kg in the sediments of the creeks. The sediment at M4 and C9 sites was heavily contaminated with about 8 and 11 of toxic unit, respectively. Cr, Cu, Pb and Zn were mostly bound to organic matter and in the residual phase, whereas Cd was mostly associated with the soluble and exchangeable phase and the residual phase. The mobility and bioavailability of Cd, Zn and Cr in the sediments of the main river were relatively higher than Cu and Pb, due to higher levels in the soluble and exchangeable fraction and the carbonate fraction. The potential acute toxicity in the sediments of the main river and creeks was mainly caused by Cu contamination, accounting for 21.7–37.1% and 16.9–46.3% of the total toxicity, respectively, followed by Zn and Pb. Adverse biological effects induced by heavy metals would be expected in the sediments of the GSPR. Therefore, the sediments of the GSPR, especially at M4 and C9 sites, need to be remediated to maintain aquatic ecosystem health.  相似文献   

3.
Concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in campus dust from kindergartens and elementary schools in Xi’an, China, were analyzed using X-ray fluorescence spectrometry and heavy metal contamination levels were assessed based on the geoaccumulation index (I geo), enrichment factor (EF) and numero synthesis pollution index (NSPI). The results indicate that, in comparison with Shaanxi soil, dust samples have elevated metal concentrations as a whole, except for V, Mn, Ni, and As. The assessment results of I geo and EF indicate that V, Mn, Ni, and As in campus dust are uncontaminated, while Ba and Cr are uncontaminated to moderately contaminated, and Co, Cu, Pb, and Zn are moderately to strongly contaminated. The NSPI results show that most dust samples presented heavily contaminated by heavy metals. More attention should be paid to heavy metal contamination of campus dust from kindergartens and elementary schools of Xi’an.  相似文献   

4.
To assess the pollution of heavy metal in dust fall, nine dust fall samples were collected during the heating period and non-heating period from Jinan, a city in northeastern China. The samples were analyzed for Cu, Pb, Zn and Cr and the contamination level of heavy metals was assessed on the basis of the geo-accumulation index (I geo). The results indicated that all of the four investigated metals accumulated significantly in the dust fall of Jinan, and the metal concentrations were much higher than background values. During the heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 354.9, 688.5, 2,585.5 and 478.6 mg kg−1. During the non-heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 228.2, 518.2, 1,933.9 and 96.3 mg kg−1, respectively. The I geo values calculated based on background values revealed that the contamination level of heavy metal in the dust fall ranges from moderately contaminated to heavily contaminated, and it mainly originates from traffic and industry. In this work, the dust fall residue compared to the standard reference was also chosen as the background value to calculate the I geo value. This method is useful for situations in which the background value is difficult to obtain.  相似文献   

5.
Samples were collected at 71 sites in the Yellow River Delta Natural Reserve in December 2010 to represent soil conditions before and after the Yellow River (YR) diversion. The As, Cd, Cu, Pb, Zn, and Ni concentrations were measured to determine metal contamination levels. Results suggest that Cd concentrations were significantly higher after the YR diversion than before. The As, Cd, Cr, Cu, Ni, Pb, and Zn soil contamination indices did not exceed contamination levels, although the heavy metal content increased after the YR diversion. The mean concentrations of these heavy metals were lower than the Class I criteria. Correlation analysis shows significant correlations between As and Cr, Cu, Ni, Pb, and Zn concentrations both before and after the YR diversion. However, no significant correlations were observed between heavy metal concentration and pH before the diversion, and no heavy metal concentration was correlated with salinity. The principal component analysis indicates that these trace elements, including As, were closely correlated with each other and therefore likely originated from shared pollution sources before the diversion. These results are useful for assessing the heavy metal contamination and proposing feasible suggestions to improve soil quality.  相似文献   

6.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

7.
The potential for soil heavy metal contamination in high risk areas is a crucial issue that will impact the environment. Soil samples were collected in 2003 and 2007 to investigate heavy metal contamination characteristics and pollution changes in the industrialized district of Baoshan (Shanghai, China). Both multi-statistic and geostatistic approaches were used and proved to be useful in the interpretation of the analytical results. The potential for soil contamination in the high risk areas presents a crucial issue that will impact the environment. The results indicate that soil in the Baoshan District is alkaline. Additionally, the accumulation of heavy metals in the soil increased between 2003 and 2007. The study results indicated that the concentration of the metals lead (Pb), chromium (Cr), cadmium(Cd), mercury (Hg), arsenic (As), zinc (Zn) and copper (Cu) in the soil has great discrepancy, especially of Pb and Cr. The concentrations of Pb and Cr in the soil show significant difference between two observed years (p?<?0.05). The concentration of most of these metals was higher in 2007 than 2003. Only the concentrations of Cd and As were not higher in 2007. Traffic and industrial contaminants were the likely source of Pb and As; Hg largely came from agricultural contamination, household garbage and industrial contamination; Cd, Cr, Zn and Cu mainly originated from industrial activities. Multivariate statistical analyses showed that human activities mainly contributed to heavy metal contamination. Spatial distribution confirmed this by showing that areas with the highest metal concentrations occurred where there were high levels of industrial activity and traffic. Potential ecological risk assessment results showed that high risk zones were highly correlated with spatial analysis. The study estimated that in 2007, 85.2?% of the district could be categorized as high risk, which is 77.4 times more than that in 2003.  相似文献   

8.
Contamination of soils with heavy metals is widespread and poses a long-term risk to ecosystem health. Abandoned and active mining sites contain residues from ore-processing operations that are characterised by high concentrations of heavy metals. The distribution and mobility characteristics of heavy metals (As, Cd, Cu, Pb, and Zn) in paddy soil samples from Kočani Field (Macedonia) using ICP-EAS and a sequential extraction procedure was evaluated. The results indicate that highly elevated concentrations of As, Cd, Cu, Pb, and Zn were detected in the paddy soil sample from location VII-2 in the vicinity of Zletovo mine and Zletovska river in the western part of Kočani Field, which drains the untreated acid mine waters and mine wastes from the active Zletovo mine. The degree of contamination based on index of geoaccumulation (I geo) from strong to weak in the paddy soils samples is Pb > As > Cd > Zn > Cu. The mobility potential of heavy metals in all paddy soil samples increases in the order As < Cu < Pb < Zn < Cd. According to the results of the anthropogenic impact on the paddy soils, a further study on the heavy metal concentrations in rice and other edible crops, the remediation process of the paddy soils and a dietary study of the local population are needed.  相似文献   

9.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

10.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

11.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

12.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

13.
Metal fluxes to the sediments of the Moulay Bousselham lagoon,Morocco   总被引:2,自引:0,他引:2  
The metal content in surface sediments (0–2 cm, 26 samples), in a sediment core (120, 1 cm slices), taken from Moulay Bousselham (Morocco) was investigated. Concentrations of Al, Fe, Mn, Pb, Zn, Cu, Ni, Cr, Cd, As, and Hg were evaluated in surface and cored sediments of Moulay Bousselham lagoon. Significantly high concentrations in μg g−1 dw of Pb (31.7–6.2), Zn (758.9–167), Cu (310.7–22), Ni (96–10.5), Cr (113–18.9), Cd (0.84–0.02), As (1–0.1), and Hg (0.61–0.02) were found in sediment samples from Moulay Bousselham lagoon. Calculated enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background], using Al as a normalizer, and correlation matrices showed that metal pollution in Merja Zerga of Moulay Bousselham lagoon was the product of anthropogenic sources, while the metal content in Merja Kehla was of natural origins. The results suggest that a major change in the sedimentary regime of the lagoon, associated with internal trapping and re-distribution of heavy metal, has been occurring in the past few decades. The cause would appear to be the construction of a Nador Canal at the lagoon. Probable effects concentrations (PEC) were often exceeded for heavy metals in the lagoon sediments, especially for Zn, Cu, Ni, and Cr, and four stations, stations MZ-11, MZ-12, MZ-13, MZ-14, MZ-16, and MZ-17, had multiple metals at presumptively toxic levels. These comparisons suggest that sediment metal levels in the river are clearly high and probably pose an environmental risk at some stations. The levels of most of the metals were not greatly enriched, a consideration that is of the utmost importance when contamination issues are at stake. Metal concentrations found in Moulay Bousselham lagoon were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

14.
The paper reports the spatial distribution and contamination level of heavy metals (Co, Cr, Cu, Mn, Ni, Pb, Zn and V) in urban topsoil from the interior area of the second ringroad of Xi’an city, China, based on X-ray fluorescence spectroscopy measurements. Geostatistical analysis shows that Co, Cu, and Pb have similar spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of Co, Cu and Pb. The spatial distribution of Cr coincides with the industrial activity, whereas the spatial distribution of Zn differs from other heavy metals. The high concentrations of Zn coincide with heavy traffic and high population density. For Mn, Ni and V, natural factors are important in controlling their distribution. The calculated geoaccumulation indices indicate that urban topsoil inside the Xi’an second ringroad was uncontaminated by Cr, V, Mn and Ni, while Pb, Cu, Co and Zn are classified as uncontaminated to moderately contaminated with means of 0.64, 0.46, 0.26 and 0.21, respectively. The Nemero synthesis pollution index of these heavy metals revealed that the topsoil inside Xi’an second ringroad has been heavily contaminated due to anthropogenic activity.  相似文献   

15.
为探讨渤海西部在多重环境因素变化下沉积物中重金属的环境地球化学行为,分析了渤海西部44个站位表层沉积物样品中8种重金属元素含量,研究了重金属元素的分布特征、环境影响因素及其生态风险。结果表明,渤海西部表层沉积物中As、Cu、Cd、Cr、Hg、Ni、Pb、Zn的平均含量分别为117 mg/kg、255 mg/kg、014 mg/kg、689 mg/kg、0037 mg/kg、303 mg/kg、223 mg/kg、757 mg/kg;Cu、Cr、Ni、Zn含量与有机碳含量、小于63 μm细粒沉积物呈显著正相关,其在表层沉积物中的分布明显受到有机质含量和沉积物粒径的控制,而As、Hg分布没有明显受到有机质含量的影响。富集系数显示,Cr、Ni、Pb和Zn为无富集,Cu、As为轻度富集,Cd和Hg为中度富集。与多种背景值和一致性沉积物质量基准相比较,渤海西部表层沉积物Pb、Cd的含量超出背景值,而Cu、Zn、Ni、Cr、As、Hg含量也存在一定的异常,但其含量水平引发有害生物效应的可能性不大,尽管重金属元素含量偏高,但生态风险较小。  相似文献   

16.
Associated with the rapid urbanization and industrialization, most of the urban parks and recreational areas in Shanghai are built close to major roads or industrial areas, where they are subject to many potential pollution source, including automobile exhaust and factory emissions. Urban dusts, containing many toxic heavy metals such as Pb, Cr, Cd, Hg and As, are one of main contributors for environmental pollution. In this study, 261 dust samples were collected from two different localities (streets and parks) in the urban area of Shanghai, China. Pb and Cr concentrations of all samples were determined by atomic adsorption spectrophotometer analyzer, and Cd, As and Hg concentrations in 74 samples by atomic fluorescence spectroscopy. The mean concentrations of Pb, Cr, Cd, As and Hg are 287, 157, 1.24, 8.73 and 0.16 mg kg−1, respectively. Each heavy metal shows a wide range of concentration values. In comparison with heavy metal background values of soil in Shanghai, urban dusts have elevated metal concentrations as a whole, except those of As. The concentrations of Pb, Cr, Cd, As and Hg are 11.3, 2.1, 10.3, 0.997, 1.7 times of the soil background values, respectively. Compared with the global mean concentrations, Cr concentration in urban dusts is slightly higher. Pb, Cr and Hg show normal distribution after logarithmic transformation. Pb, Cr, Cd, As and Hg have second-order variation trends of the spatial distribution. The spatial distribution features of five toxic heavy metals, in general, illustrate relatively high levels within the regions of the inner-city ring highway and southwestern Shanghai. Cr and Cd are higher in Baoshan industrial park and the shipbuilding industries regions. The order of environmental risk is Pb > Cd > Cr > Hg > As. Pb and Cd have the highest risk for environment pollution and human health among the five metals. The pollutant sources of toxic heavy metals in Shanghai urban dusts are preliminarily concluded as follows: As may have mainly a natural source. Burning of coal has become the main source of Hg pollution. Pb, Cr and Cd have three sources, traffic, building construction, and weathering corrosion of building materials.  相似文献   

17.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

18.
In the present study we examined the Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn contamination levels of the soils of Berehove, a small city in West-Ukraine. As a first step we determined the spatial distribution of the heavy metal contents of the urban soils; then, by studying the land use structure of the city and by statistical analysis we identified the major sources of contamination; we established a matrix of correlations between the heavy metal contents of the soils and the different types of land use; and finally, we drew a conclusion regarding the possible origin(s) of these heavy metals. By means of multivariate statistical analysis we established that of the investigated metals, Ba, Cd, Cu, Pb and Zn accumulated in the city’s soils primarily as a result of anthropogenic activity. In the most polluted urban areas (i.e. in the industrial zones and along the roads and highways with heavy traffic), in the case of several metals (Ba, Cd, Cu, Pb, Zn) we measured concentration levels even two or three times higher than the threshold limit values. Furthermore, Cr, Fe and Ni are primarily of lithogenic origin; therefore, the soil concentrations of these heavy metals depend mainly on the chemical composition of the soil-forming rocks.  相似文献   

19.
This investigation presents the temporal and spatial distribution of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Hg, and Zn), in water and in sediments of Port Klang, Malaysia. Water and sediment samples were collected from 21 stations at 3-month intervals, and contamination factor $ (C_{\text{f}} ) $ and contamination degree $ (C_{\text{d}} ) $ were calculated to estimate the contamination status at the sampling stations. Cluster analysis was used to classify the stations based on the contamination sources. Results show that concentrations of As, Cd, Hg, and Pb in sediment and As, Cd, Hg, Pb, Cr, and Zn in water were significantly higher than the background values at which these metals are considered hazardous. The main sources of heavy metal contamination in Port Klang were industrial wastewater and port activities.  相似文献   

20.
云蒙湖表层沉积物重金属分布特征及风险评价   总被引:1,自引:0,他引:1  
为了解云蒙湖表层沉积物中重金属的污染状况,选取云蒙湖沉积物中6种重金属(Cu、Zn、Pb、Cr、Cd、As)作为研究对象,测定并分析其在云蒙湖表层沉积物中的分布、来源及生态风险,以期为云蒙湖沉积物中重金属污染治理及饮用水安全保障提供依据。采用富集系数法、相关性分析及聚类分析对重金属来源进行分析,并选用富集系数法、地累积指数法和潜在生态危害指数法对重金属污染程度及潜在生态危害进行了评价。结果表明:云蒙湖表层沉积物中6种重金属Cu、Zn、Pb、Cr、Cd、As平均含量分别为20.9、73.1、23.1、62.0、0.4和4.5 mg/kg;与临沂市土壤背景比较,Cd、Zn和Cr的含量超过临沂市土壤背景值,Cd污染最严重。重金属来源分析结果显示:Cd受人类活动影响较大,可能与区域农业和林业施肥有关;Cu、Zn、Pb、Cr和 As这几种重金属以自然来源为主。综合富集系数法、地累积指数法和潜在生态危害指数法3种评价方法的结果得出,云蒙湖表层沉积物中Cd 为最主要的污染元素,且具有较强的生态危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号