首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to evaluate the impact of organic complexation on the development of Ce anomalies and the lanthanide tetrad effect during the adsorption of rare-earth elements (REE) onto MnO2. Two types of aqueous solutions—NaCl and NaNO3—were tested at pH 5 and 7.5. Time-series experiments indicate that a steady-state is reached within less than 10 h when REE occur as free inorganic species, whereas steady state is not reached before 10 d when REE occur as REE-humate complexes. The distribution coefficients (KdREE) between suspended MnO2 and solution show no or only very weak positive Ce anomaly or lanthanide tetrad effect when REE occur as humate complexes, unlike the results obtained in experiments with REE occurring as free inorganic species. Monitoring of dissolved organic carbon (DOC) concentrations show that log KdREEorganic/KdDOC ratios are close to 1.0, implying that the REE and humate remain bound to each other upon adsorption. Most likely, the Ce anomaly reduction/suppression in the organic experiments arises from a combination of two processes: (i) inability of MnO2 to oxidize Ce(III) because of shielding of MnO2 surfaces by humate molecules and (ii) Ce(IV) cannot be preferentially removed from solution due to quantitative complexation of the REE by organic matter. We suggest that the lack of lanthanide tetrad effect arises because the adsorption of REE-humate complexes onto MnO2 occurs dominantly via the humate side of the complexes (anionic adsorption), thereby preventing expression of the differences in Racah parameters for 4f electron repulsion between REE and the oxide surface. The results presented here explain why, despite the development of strongly oxidizing conditions and the presence of MnO2 in the aquifer, no (or insignificant) negative Ce anomalies are observed in organic-rich waters. The present study demonstrates experimentally that the Ce anomaly cannot be used as a reliable proxy of redox conditions in organic-rich waters or in precipitates formed at equilibrium with organic-rich waters.  相似文献   

2.
Partition coefficients for the rare earth elements (REE) Ce, Sm and Tm between coexisting garnets and hydrous liquids have been determined at high pressure and temperatures (30 kbar and 1300 and 1500°C). Two synthetic systems were studied, Mg3Al2Si3O12-H2O and Ca3Al2Si3O12-H2O, in addition to a natural pyrope-bearing system.Deviations from Henry's Law behaviour occur at geologically relevant REE concentrations. At concentrations < 3 ppm Ce, < 12 ppm Sm, < 80 ppm Tm in pyrope and < 100 ppm Ce, < 250 ppm Sm, < 1000 ppm Tm in grossular (at 30 kbar and 1300°C), Dgarnet liquidREE increases as the REE concentration in the garnet decreases. At higher concentrations, DREE is constant. Dgrossular liquidREE also constant when the garnet contains less than about 2 ppm Sm or Tm. The REE concentration at which DREE becomes constant increases with increasing temperature, decreasing REE ionic radius and increasing Ca content of the garnet.Partitioning behaviour of Ce, Sm and Tm between a natural pyrope-rich garnet and hydrous liquid is analogous to that in the synthetic systems and substantiates the substitution model proposed by Harrison and Wood (1980).Values of DREEgarnet/liquid for which Henry's Law is obeyed are systematically higher for grossular than for pyrope (Dpyrope/liquid = 0.067(Ce), 0.108(Sm), 0.155(Tm) and Dgrossular/Liquid = 0.65(Ce), 0.75(Sm), 4.55(Tm).The implications of non-Henry's Law partitioning of REE for models of basalt petrogenesis involving garnet are far-ranging. Deviations from Henry's Law permit refinements to be made to calculated REE abundances once basic model parameters have been defined.  相似文献   

3.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

4.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

5.
Distributions of the rare-earth elements (REE) in omphacite and garnet and REE behaviors during metamorphic processes were discussed. The REE concentrations of garnet and omphacite in six eclogite samples from the Dabie Mountain, central China, were measured by inductively coupled plasma-mass spectrometry (ICP-MS). The correlation of δEu ratios between garnet and omphacite indicated that chemical equilibrium of REE distribution between garnet and omphacite could be achieved during ultra-high pressure (UHP) metamorphism. Most of the partition coefficients (Kd=CiOmp/CiGrt) of light rare-earth elements (LREE) are higher than 1. However the partition coefficients of heavy rare-earth elements (HREE) are lower than 1. This indicated that the LREE inclined to occupy site M2 in omphacite, but the HREEs tended to occupy eightfold coordinated site in garnet during the eclogite formation. The REE geochemistry of the eclogites indicated that LREE could be partially lost during the prograde metamorphic process of protolith, but be introduced into the rocks during the symplectite formation. LREE are more active than HREE during the UHP metamorphism. The results are favorable to highlighting the REE behavior and evolution of UHP metamorphic rocks.  相似文献   

6.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

7.
《Geochimica et cosmochimica acta》1999,63(19-20):3487-3497
The solubility of iron(III) hydroxide as a function of pH was investigated in NaCl solutions at different temperatures (5–50°C) and ionic strengths (0–5 M). Our results at 25°C and 0.7 M in the acidic range are similar to the solubility in seawater. The results between 7.5 to 9 are constant (close to 10−11 M) and are lower than those found in seawater (>10−10) in this pH range. The solubility subsequently increases as the pH increases from 9 to 12. The solubility between 6 and 7.5 has a change of slope that cannot be accounted for by changes in the speciation of Fe(III). This effect has been attributed to a solid-state transformation of Fe(OH)3 to FeOOH. The effect of ionic strength from 0.1 to 5 M at a pH near 8 was quite small. The solubility at 5°C is considerably higher than at 25°C at neutral pH range. The effects of temperature and ionic strength on the solubility at low and high pH have been attributed to the effects on the solubility product and the formation of FeOH2+ and Fe(OH)4. The results have been used to determine the solubility products of Fe(OH)3, K1Fe(OH)3 and hydrolysis constants, β11, β12, β13, and β14 as a function of temperature (T, K) and ionic strength (I):log K1Fe(OH)3 = −13.486 − 0.1856 I0.5 + 0.3073 I + 5254/T (σ = 0.08)log β11 = 2.517 − 0.8885 I0.5 + 0.2139 I − 1320/T (σ = 0.03)log β12 = 0.4511 − 0.3305 I0.5 − 1996/T (σ = 0.1)log β13 = −0.2965 − 0.7881 I0.5 − 4086/T (σ = 0.6)log β14 = 4.4466 − 0.8505 I0.5 − 7980/T. (σ = 0.2)Both strong ethylenediaminetetraacetic acid and weak (HA) organic ligands greatly affect iron solubility. The additions of ethylenediaminetetraacetic acid and humic material were shown to increase the solubility near pH 8. The higher solubility of Fe(III) in seawater compared to 0.7 M NaCl may be caused by natural organic ligands.  相似文献   

8.
The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10−4 to 2.7 × 10−2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L−1 and 4 ? pH ? 7).  相似文献   

9.
The authors have studied the geology, geochemistry, petrology and mineralogy of the rare earth elements (REE) occurring in the Western Keivy peralkaline granite massif (Kola Peninsula, NW Russia) aged 2674 ± 6 Ma. The massif hosts Zr- and REE-rich areas with economic potential (e.g. the Yumperuaiv and Large Pedestal Zr-REE deposits), where 25% of ΣREE are represented by heavy REE (HREE). The main REE minerals are: chevkinite-(Ce), britholite-(Y) and products of their metamict decay, bastnäsite-(Ce), allanite-(Ce), fergusonite-(Y), monazite-(Ce), and others. The areas contain also significant quantities of zircon reaching potentially economic levels. We have discovered that behavior of REE and Zr is controlled by alkalinity of melt/solution, which, in turn, is controlled by crystallization of alkaline pyroxenes (predominantly aegirine) and amphiboles (predominantly arfvedsonite) at a late magmatic stage. Crystallization of mafic minerals leads to a sharp increase of K2O content and decrease of SiO2 content that cause a decrease of melt viscosity and REE and Zr solubility in the liquid. Therefore, REE and zirconium immediately precipitate as zircon and REE-minerals. There are numerous pod- and lens-like granitic pegmatites within the massif. Pegmatites in the REE-rich areas are also enriched in REE, but HREE prevails over light REE (LREE), about 88% of REE sum.  相似文献   

10.
The concentration and distribution of rare earth elements (REE) in sectorally zoned fluorite crystals from Long Lake, New York, and the Hansonburg Mining District, Bingham, New Mexico, have been studied using cathodoluminescence and synchrotron X-ray fluorescence microanalysis (SXRFMA). In cubo-octahedral samples from Long Lake, New York, Ce, Nd, Gd, Dy, Ho, Er, and Tm are preferentially partitioned into the |111| sector relative to the |100| sector. Partition coefficients (Kd = concentration in |111| sector/concentration in |100| sector) range between 3.5 for Ce, to 1.4 for Tm, with a general decrease in Kd as elements deviated from the ionic radius of Ca2+, for which REE substitute in fluorite. Diffusion of the REE has occurred, as evidenced by gradual changes in composition over distances of 0.2 to 0.3 mm at sector boundaries.In Bingham samples, three different partition coefficients were determined for Dy: Kd|100|/|111| = 2.83, Kd |100|/|110| = 1.77, and Kd |110|/|111| = 1.60. These are mean Kd values for a 95% confidence interval. In another sample from the same deposit, Dy, Er, and Gd were found to be preferentially incorporated into the |100| sector relative to the |210| sector with average Kd |100|/|210| of 3.1, 2.4, and 2.9, respectively. In a third sample, Nd was found to be preferentially incorporated into the |110| sector relative to the |321| sector with an average Kd |110|/|321| value of 2.3.Compositional heterogeneities in a given sector (concentric zoning) have been resolved using SXRFMA but are significantly less than the concentration difference across sector boundaries. Often fluorite exists in a wide variety of morphologies, as is the case in the Hansonburg Mining District of Bingham. We suggest caution when using the REE as petrogenetic indicators because fluorite trace element chemistry can vary greatly among crystals within a deposit depending on the internal morphology of a particular crystal.  相似文献   

11.
We have collected ∼500 stream waters and associated bed-load sediments over an ∼400 km2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into “dissolved” (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced.The partial extraction recovered, on average ∼20% of the Fe in the total sediment, ∼80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.  相似文献   

12.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

13.
The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L−1 NaNO3, 1-1000 nmol L−1 Ln, 10-20 mg L−1 HS). Conditional binding constants for REE-HS interaction (Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.  相似文献   

14.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

15.
Zhifang Xu  Guilin Han   《Applied Geochemistry》2009,24(9):1803-1816
The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 104 mol a−1.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(13-14):2071-2088
Twenty-three clastic metasediments from the Kongling high-grade terrain of the Yangtze craton, South China were analyzed for major, trace and rare earth elements and Sm-Nd isotopic ratios. Associated dioritic-tonalitic-trondhjemitic (DTT) and granitic gneisses as well as amphibolites were also analyzed in order to constrain provenance. The results show that the clastic metasediments can be classified into 3 distinct groups in terms of mineralogical, geochemical and Sm-Nd isotopic compositions. Group A is characterized by having no to slight negative Eu anomalies (Eu/Eu1 = 0.82–1.07), being high in Cr (191–396 ppm) and Ni (68–137 ppm), and low in Th (3.3–7.8 ppm) and REE (ΣREE = 99–156 ppm). These characteristics are similar to those of metasediments from Archean greenstone belts. In addition, the Group A metasediments have the value of the Chemical Index of Alteration (CIW) close to felsic gneisses. Their Sm-Nd isotopic, REE and trace element compositions can be interpreted by mixtures of the DTT gneisses and amphibolites. Dating of detrital zircons from 2 Group A samples by SHRIMP reveals a major concordant age group of 2.87–3.0 Ga, which is identical to the age of the trondhjemitic gneiss. These results strongly suggest that Group A was principally the first-cycle erosion product of the local Kongling DTT gneiss and amphibolite. Moreover, the higher than amphibolite Cr content and slight Eu depletion exhibited by some samples from this group infer that ultramafic rocks like komatiite and granite of probably 3.0–3.3 Ga in age also played a role.Group B is characterized by the presence of graphite and shows a more evolved composition similar to post-Archean shales with a prominent negative Eu anomaly (Eu/Eu1 = 0.48–0.77) and high CIW. On paired Cr/Th vs La/Co and Co/Th plots, Group B samples conform to a two-end member mixing line of the Kongling granitic gneiss and amphibolite. However, data on Nd model age and CIW suggest that the granite component should be younger than the sampled granitic gneiss and derived from a distal source.Both Groups A and B exhibit a clear positive correlation between CIW and TDM and a negative one between CIW and Eu/Eu1. These correlations point to the crustal evolution of the Yangtze craton towards coupled increasing CIW and Eu depletion with decreasing age. This in turn reflects the change of granitoid magmatism from local Na-rich dioritic-tonalitic-trondhjemitic rocks to widespread K-feldspar granite. The change led to the intracrustal differentiation, stabilization and growth of the craton.Group C is restite and contains abundant sillimanite and garnet and unusually high ilmenite (7–11vol%), which can be seen to be dehydration melting products of biotite under the microscope. This group shows extremely varied REE distributions from LREE enriched to depleted and from negative to strong positive (Eu/Eu1 = 1.63) Eu anomalies. Compared to Groups A and B, Group C is severely depleted in Na2O, K2O, LREE, Rb and Ba, whereas TiO2, Co, V, Sc and HREE and Y are considerably enriched. This is accompanied by anomalous high Sm/Nd (0.21–0.28), 147Sm/144Nd (0.1361–0.1738) and 143Nd/144Nd (0.511589–0.511958) ratios. TDM correlates clearly with Sm/Nd ratio and 2 out of 3 samples give significantly older to unrealistic TDM (3.9–4.9 Ga). The results document redistribution of REE and an open behavior of the Sm-Nd isotope system during the biotite dehydration melting of metasediments.  相似文献   

17.
Surface tension of sedimentary fulvic acid (FA) and humic acid (HA) with molecular weight from < 10,000 to > 300,000 was measured at 5°C and 25°C, over a wide range of concentrations (0.114-107.4 g/l) at pH 8. HA was in the form of sodium humate. Surface tension decreases with an increase in HA and FA concentration and both HA and FA were found to be surface active materials with FA exhibiting the lowest surface tension (31 dynes/cm).Plots of surface tension vs. log concentration gave two straight lines with a break at a certain concentration similar to surfactants. From the concentration at the break point, aggregation concentration (AGC) was determined. For HA with molecular weight above 10,000, the AGC decreased with an increase in molecular weight. The more hydrophobic the HA, the greater was the tendency to form aggregates. Surface excess (surface concentration) was determined (2.3 × 10?10?5.5 × 10?10mol/cn2) from the slope of the plot of surface tension vs. log concentration for concentrations lower than the AGC. Adsorption of HA into the surface layer increased with increasing molecular weight of HA.  相似文献   

18.
Our studies show that the granite bodies (γ 5 2 − 1 and γ 5 3 ) which constitute the Huangsha-Tieshanlong composite granitic intrusion in Jiangxi are characterized by their similarities in mineral assemblage, petrochemistry, trace element and REE distribution pattern. The values of ΣREE, ΣLREE, ΣHREE, ΣCe/ΣY, δEu and La/Yb apparently decrease from γ 5 2 − 1a to γ 5 2 − 1b , γ 5 3 and γ 5 3 . It is shown that the early Yenshanian W(Ta, Nb)-bearing granite (γ 5 2 − 1 ) and late Yenshanian Ta, Nb-bearing granite (γ 5 3 ) may have been derived from the differentiation and evolution of granitic magmas due to repeated remelting of the crust and their earlier and later intrusion. Although the earlier (γ 5 2 − 1b and later (γ 5 3 ) albitized Ta, Nb-bearing granites show some obvious differences in REE content, their δEu values and La/Yb ratios are similar to each other. Therefore, it may be concluded that the early and late Ta, Nb-bearing granites were derived from a congenetic magma.  相似文献   

19.
The surface binding site characteristics and Ni sorptive capacities of synthesized hydrous Mn oxyhydroxides experimentally conditioned to represent three hydrological conditions—MnOXW, freshly precipitated; MnOXD, dried at 37°C for 8 d; and MnOXC, cyclically hydrated and dehydrated (at 37°C) over a 24-h cycle for 7 d—were examined through particle size analysis, surface acid-base titrations and subsequent modelling of the pKa spectrum, and batch Ni sorption experiments at two pH values (2 and 5). Mineralogical bulk analyses by XRD indicate that all three treatments resulted in amorphous Mn oxyhydroxides; i.e., no substantial bulk crystalline phases were produced through drying. However, drying and repeated wetting and drying resulted in a non-reversible decrease in particle size. In contrast, total proton binding capacities determined by acid-base titrations were reversibly altered with drying and cyclically re-wetting and drying from 82 ± 5 μmol/m2 for the MnOXW to 21 ± 1 μmol/m2 for the MnOXD and 37 ± 5 μmol/m2 for the MnOXC. Total proton binding sites measured decreased by ≈75% with drying from the MnOXW and then increased to ≈50% of the MnOXW value in the MnOXC. Thus, despite a trend of higher surface area for the MnOXD, a lower total number of sites was observed, suggesting a coordinational change in the hydroxyl sites. Surface site characterization identified that changes also occurred in the types and densities of surface sites for each hydrologically conditioned Mn oxyhydroxide treatment (pH titration range of 2-10). Drying decreased the total number of sites as well as shifted the remaining sites to more acidic pKa values. Experimentally determined apparent pHzpc values decreased with drying, from 6.82 ± 0.06 for the MnOXW to 3.2 ± 0.3 for the MnOXD and increased again with rewetting to 5.05 ± 0.05 for the MnOXC. Higher Ni sorption was observed at pH 5 for all three Mn oxyhydroxide treatments compared to pH 2. However, changes in relative sorptive capacities among the three treatments were observed for pH 2 that are not explainable simply as a function of total binding site density or apparent pHzpc values. These results are the first to our knowledge, to quantitatively link the changes induced by hydrologic variability for surface acid base characteristics and metal sorption patterns. Further, these results likely extend to other amorphous minerals, such as Fe oxyhydroxides, which are commonly important geochemical solids for metal scavenging in natural environments.  相似文献   

20.
Two cores of sediments, named NR and EB, were collected in the Simbock Lake (Mefou watershed, Yaoundé) to assess their provenance and the degree of heavy metal pollution based on mineralogical and geochemical data. The sediments are sandy, sand-clayey to clayey, and yellowish brown to greenish brown, and with high amounts of organic matter (average value of TOC is 1.95%). The sediments are mainly composed of quartz, kaolinite, accessory goethite, smectite, rutile, feldspars, illite, gibbsite, and interstratified illite-vermiculite. Fourier transform infrared (FT-IR) spectroscopy shows that kaolinite is less crystallized in the NR core than in the EB core. The Index of Compositional Variability (ICV), Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and the Rb/Sr and K2O/Rb ratios indicate a high weathering intensity in the source area. These sediments have low contents in Al2O3, Fe2O3, Na2O, K2O, MgO, and CaO as well as high values in SiO2, P2O5, TiO2, and MnO relative to the upper continental crust. The concentrations of Cr, V, Ba, and Zr are higher in the NR core than those in EB. The total rare earth element (REE) content varies between 78 and 405 ppm. The light REE are abundant (LREE/HREE ~?18–59; avg.?=?25.61). The chondrite-normalized REE patterns exhibit (i) negative Eu anomaly (Eu/Eu* ~?0.38–0.62; avg.?=?0.5), (ii) slight positive Ce anomaly (Ce/Ce* ~?1.11–1.34; avg.?=?1.11), and (iii) high REE fractionation ((La/Yb)N ~?12.3–51.75; avg.?=?25.61). The enrichment factor (EF) shows that the Mefou watershed through the Simbock Lake sediments is slightly polluted by the agricultural and urban activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号