首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable carbon isotope ratios have been measured in skeletons of the temperature shallow water scleractinian coral, Astrangia danae. δ13C values ranging from ?5.42 to ?7.30%. revealed the expected depletion of 13C in skeletal carbonate relative to sea water bicarbonate. Differences among the ratios could not be attributed to collection site and were not correlated to skeletal morphology. Values of δ13C were directly related to zooxanthellae density for all colonies, so that as zooxanthellae concentration increased, δ13C valued increased. Colonies maintained under high temperature conditions were offset from the normal, exhibiting ratios less enriched in 13C than similar colonies from natural conditions. These trends supported the models of Weber and Goreau in which the carbon pools used in calcification are modified by algal photosynthesis. Direct evidence of physiological differences between symbiotic and asymbiotic colonies of A. danae has also been provided.  相似文献   

2.
Stable isotope ratios of C, N and H, elemental compositions and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of δ13C and HC ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The δ15N values are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.  相似文献   

3.
Contour maps showing variations in carbon and oxygen isotope ratios may be useful as a guide to ore. Previous literature suggests that the isotopic composition of carbon is related to the environment in which it is deposited. Sedimentary syngenetic ore deposits are also related to the depositional environment in which they occur and should therefore be related to the isotopic composition of the carbon deposited along with the ore. Although metamorphism may obscure palaeontological and stratigraphic indicators of environment, the isotopic composition of organic carbon appears to be unaffected by it. Previous literature suggests that variations in oxygen isotopes can be used also as a guide to certain epigenetic ore deposits.
Zusammenfassung Isotopenverteilungskarten sind nützliche Hilfsmittel bei der Erzprospektion. In der Literature wird auf die Abhängigkeit der Isotopen-Zusammensetzung vom Ablagerungsmilieu aufmerksam gemacht. Sedimentäre syngenetische Erzlagerstätten sind ohne Zweifel vom Ablagerungsmilieu abhängig. Es liegt deshalb nahe, die Isotopen-Zusammensetzung des darin enthaltenen Kohlenstoffs mit derjenigen der erzbildenden chemischen Elemente zu vergleichen. Obwohl metamorphe Prozesse paläontologische und stratigraphische Prozesse verwischen können, scheint die Isotopen-Zusammensetzung davon unbeeinflußt zu bleiben. Als Hilfsmittel können weiterhin die in der Literatur beschriebenen Isotopenverhältnisse des Sauerstoffs herangezogen werden.
  相似文献   

4.
All of the major deep-water sedimentary provinces of the Gulf of Mexico were sampled with 48 piston cores, representative of the late Quaternary. The amount (per cent) and δ5C13 of the organic carbon in the sediment was measured at intervals within each core.Graphs of δC13 versus depth for each core give an indication of the sedimentological history of the Gulf. They show the extent of terrestrial influence on the Gulf during the late Pleistocene.Changes in δC13 of up to 6.0%.(from ~ ?19%.to ?25%. vs NBS-20) were measured across the Pleistocene-Holocene boundary in cores from the abyssal plain. These changes are consistent with a model wherein varying amounts of land-derived organic carbon were transported to the Gulf basin during glacial periods.By comparing graphs for cores from different areas, it was concluded that the major parameter affecting the δC13 values of organic carbon from marine sediments is the relative amount of terrestrial material present in the sediment. The maximum possible effect of the Pleistocene-Holocene temperature change in the Gulf was determined to be ~1.0%, if such an effect occurs at all.  相似文献   

5.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

6.
The chemical and stable isotope compositions of unpolluted ground waters in carbonate terranes are a function of the pH, PCO2, 13C content of the ground water recharge, the 13C content of the carbonate rock, and the manner in which the rock is dissolved or precipitated. Physico-chemical models show that significantly different relationships exist between Ca2+ plus Mg2+, HCO3?, pH and 13C content of unpolluted ground waters when carbonate solution occurs in the presence or absence of a gas phase. A study was made of these relationships in waters from 21 springs and 13 wells in Nittany Valley, Pennsylvania. Assuming that CO2 in the recharge zone has a 13C contents below ?21%. vs PDB, the data indicate that ground water flow to wells and springs, and carbonate rock solution probably occurs chiefly in the absence of a gas phase. This is in spite of the fact that most of such flow is under water table conditions. 13C contents averaged ?12·3%. for the spring waters and ?13·3%. for the well waters. Five well waters polluted by septic tank or sewage effluents had carbon isotopic compositions from ?13·5 to ?16·4%.,vs ?11·3 to?12·7 %. for the eight well waters relatively free of organic wastes.  相似文献   

7.
8.
Charred organic remains are ubiquitous in the archaeological and fossil record and are often used to interpret past environments and climate. This study focuses on the physical and chemical alteration that takes place during heating (i.e. charring). Modifications to the internal and external morphology were noted alongside the change in molecular and stable carbon isotope signature. Molecular analyses were undertaken using direct temperature resolved mass spectrometry and the stable carbon isotopes determined using isotope ratio mass spectrometry. The results of this study document a general enrichment in 13C/12C composition of charred material which could reflect the changes observed in both the molecular composition and the relative proportions of the molecules formed. These results indicate that spurious results might be inferred when comparing the stable carbon isotope signature of charred/charcoalified material with uncharred organic matter  相似文献   

9.
Bivalves from the Late Jurassic and Early Cretaceous stratigraphic section at Las Zabacheras (Galve Sub-basin Teruel, northern Spain), are reviewed from both systematic and palaeoautoecological perspectives. For this study the Villar del Arzobispo Formation, well known for important dinosaur occurrences, was sampled from the boundary with the underlying Higueruelas Formation (Late Jurassic), to the first levels of the overlying El Castellar Formation (Early Cretaceous). The bivalve taxa have Late Jurassic affinity, pointing to a possible Jurassic-Cretaceous boundary towards the top of the Villar del Arzobispo Formation. We have sampled oncoids, whose nuclei are bivalves, through the section to study environment change in this lithostratigraphical formation. Geochemical trace elements and δ13C and δ18O stable isotope analysis of the oncoids enable us to determine the conditions in which the microbialites were formed and provide further palaeoenvironmental data from the deposits containing the bivalves. Bivalve taxa change from the lower part of the Villar del Arzobispo Formation, where Ceratomya excentrica and Unicardium cf. subregulare are characteristic of marine conditions, becoming more continental towards the top of the formation with the presence of Unionoidean bivalves, and in the “Wealden” facies of the El Castellar Formation, where Teruella gautieri, has been found. Bivalves and oncoids allow us to recognize continental conditions where the first dinosaur of Spain, the sauropod Aragosaurus ischiatus was found, in an open water system, where there was limited evaporation, and with enough energy to produce well oxygenated water.  相似文献   

10.
The present study aims to establish the factors controlling the stable carbon isotopic compositions (δ13C) of individual aromatic hydrocarbons analysed by compound specific isotope analysis (CSIA) in crude oils from western Australian petroleum basins of varying age and facies type. This paper reports δ13C values of individual aromatic hydrocarbons, like alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes and methylated biphenyls. The main aims are to confirm the origin (source) and age of these oils based on CSIA of selected aromatic compounds and to understand why the Sofer plot is ineffective in establishing the source of western Australian petroleum systems. The bulk δ13C of saturated and aromatic hydrocarbon fractions of crude oils have been previously used to differentiate sources, however, many Australian crude oils are not classified correctly using this method. The oils were classified as marine by the δ13C values of individual aromatic compounds and as terrigenous based on the bulk δ13C data (Sofer plot).The oils where the δ13C values of 1,6-DMN and 1,2,5-TMN isomers are most negative are indicative of a marine source, whereas oils with a less negative values for the 1,6-DMN and 1,2,5-TMN isomers are derived from marine source rocks that contain a significant terrigenous component. Similarly, oils with the least negative δ13C values for the 1-MP and 1,9-DMP isomers reflect varying inputs of terrigenous organic matter to the their marine source rocks. Plots of P/DBT and Pr/Ph concentration ratios versus δ13C values of DMP, 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP are constructed to establish the relative amount of terrigenous organic matter contributing to the source rock of a series of marine oils. The ratios of P/DBT and Pr/Ph plotted against the δ13C values of the aromatic isomers (such as 1,6-DMN, 1,2,5-TMN, 1-MP and 1,9-MP) provide a novel and convenient way to discriminate crude oils derived from different source rocks that contain varying amounts of marine and terrigenous organic matter.  相似文献   

11.
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ65Cu, δ66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g−1 Cu and 2084 μg g−1 Zn in the organic horizons. The δ65Cu values varied little (−0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ66ZnIRMM values were isotopically lighter in ash (−0.41‰) and organic horizons (−0.85‰ to −0.47‰) than in bedrock (−0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.  相似文献   

12.
For modelling isotopic variations in oils it is convenient to differentiate the effects of oil generation ( 100–150°C) from the effects of oil to gas cracking ( 150–180°C). During generation, δ13C of kerogen may increase by up to 1% due to release of isotopically light oil and gas, although most kerogens show little or no chan δ13C of the generated oil increases by between 0 and 1% (av. 0.5%) due to mixing of isotopically heavy oil with an initial isotopically light unbound fraction, possibly of bacterial origin. The change occurs mostly over the first 20% of generation. During oil to gas cracking, kinetic isotope effects become important and the effect on δ13C of the remaining oil can be modelled as a Rayleigh process. δ13C increases by 1.5% by 50% cracking. Insufficient data are available to calibrate the effects at higher levels of cracking, and modelling these variations is hindered by a lack of understanding of the mechanism of pyrobitumen formation. However, increases greater than about 4% are unlikely to be observed. With increasing maturity, the low molecular weight fractions become isotopically heavy faster than the high molecular weight fractions. As a result, any separation of the low molecular weight fraction into a gas phase (“condensate formation”) will produce an isotopic difference between oil and condensate that depends on maturity. In the early stages of generation the condensate may be up to 1% lighter than the remaining oil. With increasing maturity, this difference at first decreases and then increases in the opposite sense. By half way through oil to gas cracking the condensate may be 1.5% heavier than the residual liquid. More subtle rearrangement reactions may result in small, but significant, changes to the shape of the isotope “type-curves” when different oil fractions are compared.  相似文献   

13.
Four new sulfur isotope ratios of native volcanic sulfur are given and it is shown that isotope distributions are best presented with histograms.Possible causes governing the isotope compositions of native volcanic sulfur are briefly discussed.With 1 Figure  相似文献   

14.
《Applied Geochemistry》1995,10(5):547-552
Stable Cl and C isotope ratio results for 3 selected chlorinated solvents, perchloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) provided by 4 different manufacturers are presented. The isotope ratio for all compounds range between −3.5 and +6.0‰ forδ37Cl and from −37.2 to −23.3%. forδ13C. The greatest37Cl difference between manufacturers is observed in the TCE samples which showδ37CI values of −2.5%o for PPG, +2.43‰ for ICI and +4.4‰ for DOW. TCAs show a smaller range (−2.4 to +2.0‰), while the TCEs have slightly different37Cl contents. The13C data show the most distinctδ13C values for PCEs (−23.3 for DOW, −24.1 for Vulcan, −33.8 for PPG and −37.2‰ for ICI) while both TCEs and TCAs show a smallerδ13C range, but still distinct differences. These preliminary data suggest that each manufacturer and solvent type may have distinctiveδ637Cl andδ13C values. These results show that by using a combination of37Cl and13C, there is a potential to indicate a specific source of chlorinated solvents, as well as an ability to delineate contamination episodes caused by these compounds in groundwaters.  相似文献   

15.
《Applied Geochemistry》2006,21(4):547-562
Reducing the concentration of dissolved organic C (DOC) in water is one of the main challenges in the process of artificial groundwater recharge. At the Tuusula waterworks in southern Finland, surface water is artificially recharged into an esker by pond infiltration and an equal amount of groundwater is daily pumped from the aquifer. This groundwater study was conducted to consider the role of redox processes in the decomposition of DOC. The isotopic composition of dissolved inorganic C (δ13CDIC) in the recharged water was used as a tracer for redox reactions. The isotopic composition of O and H in water was determined in order to calculate mixing ratios between the local groundwater and the infiltrated surface water. Three distinct processes in the reduction of the DOC content were traced using isotopic methods and concentration analyses of DIC and DOC: (1) the decomposition of DOC, (2) adsorption of DOC on mineral matter, and (3) the dilution of artificially recharged water by mixing with local groundwater. The largest decrease (44%) in the DOC content occurred during the early stage of subsurface flow, within 350 m of the infiltration ponds. The reduction of DOC was accompanied by an equal increase in DIC and a significant drop in δ13CDIC. This change is attributed to the oxidative decomposition of DOC. A further 23% decrease in DOC is attributed to adsorption and a final drop of 14% to dilution with local groundwater.  相似文献   

16.
近几年,PM2.5浓度上升导致灰霾事件频繁发生,已经引起了广泛的关注。碳组分是PM2.5中的重要组分,被认为是灰霾形成和转化的重要因素,因此,研究PM2.5中含碳组分的来源及其化学过程具有重要的意义。本研究于2016年12月至2017年8月期间在南昌地区共采集105个PM2.5样品,分析了PM2.5样品中总碳(TC)浓度及其碳同位素(δ^13C)。结果表明,采样期间TC的年平均浓度为(12.1±2.1)μg/m^3,总体上呈现冬季高、夏季低的变化趋势,可能是受不同季节气象因素和来源变化的影响。δ^13C的年平均值为(?26.1±0.2)‰,总体上呈现冬季高、春季低的变化趋势,可能是受不同来源的影响。利用贝叶斯模型计算南昌地区PM2.5中TC主要来源于C3植物燃烧和机动车尾气,年源贡献分别为49.3%和28.7%;其次是煤燃烧和C4植物燃烧,年源贡献分别为17.7%和4.2%。春季δ^13C值偏低是由于C3植物燃烧贡献相对较高,而冬季δ^13C值偏高则是煤燃烧贡献增加。  相似文献   

17.
The stable carbon isotope composition sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the δ13C values for sediments ranged from ?20.1 to ?23.9%. Anomalously low values, ?26.8 to 29.3%. were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The δ13C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments.  相似文献   

18.
Concentrations of Fe, Mn, Cu, Zn, U and Pb, and stable Pb isotopes 206Pb, 207Pb and 208Pb were measured via inductively coupled plasma mass spectrometry in sediments, water and freshwater mussels (Velesunio angasi) from two catchments in the Alligator Rivers Region, Australia. Sediment U and Pb concentrations were higher in Magela Creek downstream than upstream of the Ranger U mine due to the mineralised nature of the catchment and potential local input of sediment from the mine site. Water metal concentrations were highest in Georgetown Creek, which is a tributary of Magela Creek and part drains the Ranger mine site, but there was little difference in concentrations between the Magela Creek upstream and downstream sites. Metal concentrations in mussels collected immediately upstream and downstream of the mine site also showed little difference, whereas Pb isotope ratios displayed a very distinct pattern. The 206Pb/207Pb and 208Pb/207Pb isotope ratios were more uranogenic downstream than upstream of the site and also more uranogenic than ratios measured in Sandy Billabong, a reference billabong in a catchment not influenced by U mineralisation. Isotope ratios were also more uranogenic in younger mussels, potentially due to the increasing footprint of the mine site over the past decade. The most uranogenic ratios were found in mussels from Georgetown Creek and at a site approximately 2 km downstream. At Mudginberri Billabong, approximately 12 km downstream of the Ranger mine, the relative contribution of uranogenic Pb to the total Pb concentration in mussels was small and overwhelmed by the input of industrial Pb with a Broken Hill type Pb signature. Whereas metal uptake by and thus concentrations in mussel flesh are influenced by water chemistry, mussel condition and metabolic rates, Pb isotope ratios are independent of these factors and provide a powerful means of source apportionment of contaminants in mussels and waterways, in particular in an U mining environment.  相似文献   

19.
Stable carbon isotope (δ13C) analysis was used in the Peridido Estuary, Florida U.S. to determine the predominant carbon source that supports the bacterial assemblage. Stable carbon isotope values were measured in the suspended particulate matter (SPM), dissolved organic and inorganic matter, and bacteria. Stable nitrogen isotope (δ15N) ratios were measured in SPM and nitrate to assist in understanding carbon cycling through the estuary. Analyses were conducted on samples from riverine, coastal, and anthropogenic sources and compared with samples from the bay. Stable isotope ratio analysis was coupled with estimates of mixing of riverine and coastal waters into the bay. Preliminary observation of the °13C data indicates that terrestrial organic matter is the primary carbon source that is assimilated by bacteria in the ecosystem. Stable isotope data from carbon and nitrogen pools in combination with analysis of estuarine current velocities indicates that primary production is an important factor in the carbon cycle. This study demonstrates the importance of stable isotope analysis of multiple carbon and nitrogen pols to assess sources and cycling of organic matter.  相似文献   

20.
Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2–3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号