首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
金红石是榴辉岩中的主要含钛副矿物。中国大陆科学钻探工程主孔100-2000m岩心样品中,金红石榴辉岩、多硅白云母榴辉岩和蓝晶石榴辉岩中都程度不等地含有金红石。金红石既可以与其它矿物一起包裹在主要变质矿物中,也可以呈粒间矿物,但在榴辉岩经受角闪岩相退变质作用过程中,金红石亦会退变为榍石。本文利用电子探针除了分析了金红石的主要元素外,还仔细测量了Nb、Cr、Zr含量。结果显示,Nb平均含量为147ppm,最高含量为670ppm,Cr的平均含量为614ppm,最高含量为3630ppm,低Nb特征(<1000ppm)显示榴辉岩原岩为镁铁质岩石;此外,三类榴辉岩也具有不同的金红石Nb、Cr地球化学特征,即金红石榴辉岩中的金红石表现为低Cr(<500ppm)、Nb变化大(0-670ppm)的特征,多硅白云母榴辉岩中的金红石以中等Cr含量(500-1200ppm)、Nb变化较大(0-480ppm)为特征,而蓝晶石榴辉岩中的金红石显著富Cr(2000-3630ppm),而Nb则非常贫乏(<140ppm)。在总共289个金红石Zr含量数据中,大部分Zr含量分布在150-240ppm之间,均值约为200ppm;利用Zacketal.(2004)提出的金红石温度计,计算得到金红石的形成温度介于690℃和7870℃之间。研究结果表明,金红石的微量元素分析是研究榴辉岩原岩特征及其钛成矿作用的实用方法之一。  相似文献   

2.
论述了大陆俯冲碰撞带中地幔橄榄岩的基本特征和成岩类型,并重点讨论柴北缘超高压变质带中不同性质的橄榄岩及其成因。根据岩石学特征,我们确定柴北缘超高压带中发育有两种类型的橄榄岩:(1)石榴橄榄岩,岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄岩和石榴辉石岩,是大陆型俯冲带的标志性岩石。金刚石包裹体、石榴石和橄榄石的出溶结构、温压计算等均反映其来源深度大于200km。地球化学特征表明该橄榄岩的原岩是岛弧环境下高镁岩浆在地幔环境下堆晶的产物。(2)大洋蛇绿岩型地幔橄榄岩,与变质的堆晶杂岩(包括石榴辉石岩、蓝晶石榴辉岩)和具有大洋玄武岩特征的榴辉岩构成典型的蛇绿岩剖面,代表大洋岩石圈残片。这两类橄榄岩的确定对了解柴北缘超高压变质带的性质和构造演化过程有重要意义。  相似文献   

3.
ABSTRACT

The Hujialin ultramafic complex in the central region of the Sulu ultra-high pressure (UHP) metamorphic belt consists of discontinuous lenses of garnet-bearing clinopyroxenite and dunite surrounded by marginal serpentinite. The clinopyroxenite shows relatively low concentrations of compatible elements, such as Cr (≤1670 ppm) and Ni (≤514 ppm) and Ir-group platinum group elements (IPGE; Ir, Os, and Ru; ≤4.8 ppb in total). They show varying ratios (0.02–2.50) of IPGE to Pd-group PGE (PPGE). Their chondrite-normalized rare earth elements (REE) patterns are convex and the total REE concentrations range from 18 to 63 times that of Cl chondrite. The bulk rocks show a ‘subduction-related’ geochemical signature, with high concentrations of fluid-mobile elements (i.e. Sr, Ba) relative to high-field strength elements (i.e. Nb, Y, Zr). Clinopyroxene is diopside and contains low Al2O3 (<2.76 wt.%) and high SiO2 (54.6–56.9 wt.%). Olivine grains enclosed by clinopyroxene and in the matrix show relatively low Fo (76.6–80.7) and NiO contents (0.18–0.29 wt.%). The bulk rock compositions and mineral chemistry of olivine and clinopyroxene suggest that the unit was a cumulate of a subduction-related melt. On the other hand, dunite and its hydration product, serpentinite, have a different origin. The bulk rock and mineral chemistry suggest that dunite represents a mantle wedge peridotite in a spinel-stable field. Both clinopyroxenite and spinel-bearing dunite were once located in the mantle wedge below the southern margin of the North China craton (NCC), and were dragged by a mantle flow into the continental subduction channel along the interface between the subducting Yangtze craton (YZC) and the overlying NCC. Although clinopyroxenite and dunite are dense (2.8–3.2 g/cm3), the buoyancy-driven exhumation of voluminous granitic rocks of the YZC likely brought clinopyroxenite and dunite to shallow crustal depths. The lack of the evidence for high pressure to ultra-high pressure (HP-UHP) metamorphism in spinel-bearing dunite may be explained by overall low Al and Ca in the bulk rocks. Alternatively, dunite was not subducted to deep levels, but exhumed together with the deeply subducted clinopyroxenites and granite during their exhumation.  相似文献   

4.
The CCSD‐PP1 drillhole penetrated a 110‐m‐thick sequence of the Zhimafang ultramafic body in the Sulu ultrahigh‐pressure (UHP) metamorphic belt, east China. The sequence consists of interlayered garnet‐bearing (Grt) and garnet‐free (GF) peridotite. Eleven layers of Grt‐peridotite, ranging from 1.2 to 9.5 m in thickness, have an aggregate thickness of 54.49 m, whereas eight layers of GF‐peridotite, ranging from 2.2 to 14.2 m in thickness, have a total thickness of 57.53 m. The boundaries between the two rock types are gradational. The Grt‐peridotites have slightly higher contents of Al2O3, CaO and SiO2, and lower Mg#s (0.90–0.92) than the GF‐peridotites (Mg#s 0.91–0.93). Both contain low TiO2 (<0.05 wt%) and have higher modal abundances of enstatite (average 10 vol.%) than diopside (1–5 vol.%), typical of depleted‐type upper mantle. The diopside in these rocks has high and relatively uniform Mg# members (0.93–0.95), but highly variable Al2O3 (0.2–2.3 wt%), Na2O (0.5–2.5 wt%) and Cr2O3 (0.38–2.09 wt%). Enstatite (En92?93) contains very low Al2O3 (0–0.3 wt%). Both porphyroblastic and equigranular garnet are present. The equigranular varieties are zoned, from core to rim in Cr2O3 (3.4–4.2 wt%), MgO (18.4–17.5 wt%) and Al2O3 (21.1–20.1 wt%). Titania is very low in all the garnet, mostly <0.05 wt%. Chromite or chromium (Cr)‐spinel occur both in the Grt‐ and GF‐peridotite, and are characterized by high contents of Cr2O3 (49–58 wt%) and FeO (24–43 wt%), similar to that in iron‐rich Alpine‐type peridotites. Based on the bulk‐rock MgO–FeO compositions, the Zhimafang Grt‐peridotite probably underwent 20–30% partial melting, whereas the GF‐peridotite may have undergone as much as 35–40% partial melting, suggesting that the two rock types owe their differences to different degrees of partial melting rather than to pressure differences during metamorphism.  相似文献   

5.
潘永信  朱日祥 《岩石学报》2005,21(4):1101-1108
本文对采自大别山碧溪岭、新店、石马、花凉亭和朱家冲等地点的102块定向超高压和高压变质榴辉岩、片麻岩和大理岩等样品,进行了岩石磁学和磁化率各向异性(AMS)研究。磁化率和磁化强度随温度变化以及磁滞回线参数的分析结果表明,岩石剩磁载体以假单畴-多畴磁铁矿为主。新鲜榴辉岩和大理岩的磁化率很低,经过退变质作用的榴辉岩具有最大磁化率值,片麻岩的磁化率变化范围较大。这表明这些岩石中的磁性矿物含量主要受退变质作用和原岩成分差异的控制。磁化率各向异性度(P)主要受磁面理(F)的控制,显示出在其发育期以挤压构造环境为主;新鲜榴辉岩、退变质榴辉岩和片麻岩的F和P值依次增大。榴辉岩和片麻岩的AMS椭球的展布近似。在地理坐标下,这些AMS椭球的最小主轴(K3)以向北倾为主,最大主轴(K1)多为南倾。  相似文献   

6.
The Raobazhai ultramafic massif of the ultrahigh pressure Sulu–Dabie orogenic belt, central China, is thought to be a segment of subcontinental lithospheric mantle that was subducted and exhumed during the Triassic collision of the North China and Yangtze cratons. We performed a Re–Os isotopic study of peridotites from the massif, associated with major and trace element analysis and textural examination. Os (1.02 to 6.28 ppb) and Re (0.004 to 0.376 ppb) concentrations are typical of orogenic lherzolite values, and 187Os/188Os ratios (0.1157 to 0.1283) are all similar to or lower than the proposed primitive upper mantle value. 187Os/188Os is roughly correlated with 187Re/188Os, and strongly correlated with Al2O3. These correlations can be explained by radiogenic ingrowth of 187Os since an ancient partial melting event. TMA model ages (1.7 to 2.0 Ga) of refractory peridotites from the lower massif are consistent with the model age (1.8 Ga) obtained from the 187Os/188Os vs. Al2O3 correlation at ~1% Al2O3. This age cannot distinguish the cratonic provenance of the Raobazhai massif, since similar Re–Os model ages have been obtained from both the North China and the Yangtze cratons. The poor quality of the 187Os/188Os vs. 187Re/188Os correlation indicates that the Re/Os ratios were disturbed, perhaps during Triassic subduction. The mainly lherzolitic samples of the upper massif, which were most strongly affected by this process, have porphyroclastic textures with fine-grained olivine, pyroxene and amphibole neoblasts, suggesting Re mobility during recrystallization in the presence of fluids.Previous studies of ultramafic xenoliths from arc volcanics demonstrate that slab-derived melts or fluids can both scavenge mantle Os and add substantial amounts of radiogenic Os to the suprasubduction mantle. In Raobazhai, both trace element patterns and the abundance of hydrous phases provide evidence for extensive interaction with fluids during subduction and/or exhumation. Nevertheless, the strong correlation between 187Os/188Os and Al2O3, and the high Os concentrations of these rocks indicate that Os isotopic ratios, and probably even Os concentrations, were essentially unaffected by this process. Assuming that the arguments favoring a suprasubduction setting for the Raobazhai massif are valid, these data provide evidence that Os systematics are sometimes surprisingly robust, even above subduction zones.  相似文献   

7.
兴蒙造山带东缘是中国重要内生多金属成矿区,近年来已发现钼矿床20余座。依据矿床地质、地球化学特征和年代学成果,将该区内生钼矿床类型划分为斑岩型、接触交代热液型和中高温浅成热液型。初步确定斑岩型矿床形成与高钾钙碱性花岗质岩浆作用有关,而接触交代热液型矿床形成与钙碱性花岗质岩浆作用以及围岩性质有关,成矿作用主要发生在195~165Ma和115~110Ma两个区间,成矿物质普遍具有壳幔混合源的特点;而其地球动力学背景分别与古太平洋板块俯冲欧亚大陆和伊泽奈崎板块俯冲欧亚大陆相适应。  相似文献   

8.
Haijin Xu  Changqian Ma  Kai Ye   《Chemical Geology》2007,240(3-4):238-259
Two stages of early Cretaceous post-orogenic granitoids are recognized in the Dabie orogen, eastern China, which recorded processes of extensional collapse of the orogen. The early stage granitoids ( 132 Ma) are foliated hornblende quartz monzonites and porphyritic monzogranites. They are of high-K calc-alkaline series and metaluminous to weakly peraluminous, with high K2O and low MgO contents (Mg# values: 32.0–46.0), they contain high Sr, low Y and heavy rare earth elements (HREE), and have high Sr/Y and (La/Yb)N ratios, without clear negative Eu, Sr and Ti anomalies. The early stage deformed granitoids have adakitic geochemical compositions and are equilibrated with residues rich in garnet and poor in anorthite-rich plagioclase, and thus indicate the existence of an over-thickened (> 50 km) crustal root beneath the orogen at  132 Ma. The later stage granitoids ( 128 Ma) are undeformed fine-grained monzogranites, fine-grained K-feldspar granites and coarse-grained K-feldspar granite-porphyry. They belong to a peraluminous and high-K calc-alkaline to shoshonite series, and display a flat HREE pattern and have strong negative Eu, Sr and Ti anomalies, with low Sr/Y and (La/Yb)N ratios. The late stage granitoids are equilibrated with residues rich in anorthite-rich plagioclase, hornblende, ilmenite/titanite and poor in garnet, indicating that the crust of the Dabie orogen became thinner (< 35 km) at  128 Ma. SHRIMP zircon U–Pb ages and changing compositional trends for these two stages of granitoids indicate that the over-thickened crust formed by the Triassic continental subduction/collision under the Dabie orogen remained until the early Cretaceous, and collapsed quickly in a few million years during the early Cretaceous.  相似文献   

9.
High‐ to ultrahigh‐pressure (HP‐UHP) metamorphic rocks that resulted from deep continental subduction and subsequent exhumation in the Sulu orogenic belt, China, have experienced multiphase deformation and metamorphic overprint during its long journey to the mantle and return to the surface. HP‐UHP shear zones are strain‐localized weak zones on which the UHP slab is transported over long distances. HP‐UHP shear zones are well exposed along a 200‐km belt in the Sulu UHP metamorphic belt. The shear zones lie structurally below the UHP rocks and above the non‐UHP rocks, suggesting the early exhumation of the UHP rocks by thrusting. The large area distribution, HP‐UHP nature, high strain and structural association of the shear zones with the UHP rocks suggest that the shear zones are probably a regional detachment developed during the early stage of exhumation of the UHP rocks. Kinematic indicators suggest top‐to‐the N–NW motion of the UHP slab during the exhumation, which, combined with isotope signature in Mesozoic igneous rocks, leads us to the interpretation that the subduction polarity is the North China plate down to the south rather than the Yangtze plate down to the north in the Sulu region.  相似文献   

10.
This paper considers the results of mineralogical, geochemical, and geochronological studies of leucogabbroids of the Karagai Massif located within the Lesser Khingan superterrane of the Central Asian fold belt. The main features of the rock-forming minerals of the gabbroids are the high calcium content of the clinopyroxene corresponding in composition to diopside-salite (Wo48–51En33–39Fs11–16) or augite (Wo22–35En46–47Fs18–33), the high basicity of the plagioclase (An90–92), and the presence of primary magmatic magnesian hornblende. The age of the massif was determined by U-Pb zircon dating as 257 ± 1 Ma. The compositional peculiarities of the gabbroids indicate that they were most probably formed in island-arc or active continental margin settings. With allowance for the existing geodynamic reconstructions and the data obtained in the present study, the formation of the Late Paleozoic gabbroids of the Karagai Massif was presumably related to the final stages of the subduction processes that preceded the collapse of the terranes of the eastern Central Asian fold belt.  相似文献   

11.
管店岩体位于扬子地块东部,沿郯庐断裂带南段主断裂带侵位,其岩石组成为石英二长岩和二长岩.精确的SHRIMP锆石U-Pb定年给出岩体的形成时代为(131.5±1.6)Ma.该岩体为一中酸性侵入体(SiO254.84%~67.83%),属于高钾钙碱性系列,并具有与埃达克(质)岩类似的地球化学特征,如高Al2O3(14.12%-15.14%)、Sr(612~976 μg/g)含量及Sr/Y(31~77)、La/Yb(18-42)比值,但低Y(8.20-21.4 μg/g)和Yb(0.90~1.70 μg/g)含量,无明显Eu异常至Eu正异常.管店侵入岩的"Sr/86Sr初始比值为0.7058-0.7061,εNa(t)为-17.03--15.11,锆石的ghr(t)(-26.3-22.6)较低但相对均匀,说明其不可能由俯冲洋壳熔融形成.管店埃达克(质)侵入岩具有较高的Mgo(2.21%-6.75%)含量和Mg(56-62)值及相容元素(Cr 85.4-356μg/g,Ni40.8~144μg/g)含量.管店侵入岩可能由拆沉下地壳熔融形成,岩浆在上升过程中与地幔橄榄岩发生了反应.早白垩纪郯庐断裂带的活动、扬子地块东部在扬子.华北两块体碰撞后的地壳拆离作用可能导致增厚下地壳的拆沉与埃达克质岩浆活动.  相似文献   

12.
吉林敦化—密山断裂带北段琵河口—黄泥河镇之间新发现有多处的霓辉粗面岩,岩石以普遍富含碱性矿物霓辉石为特点,均呈整合接触覆盖于船底山期碱性玄武岩之上,具高位喷发、低位充填特点,全岩K--Ar年龄测定结果 (25. 64±0. 53 Ma、27. 36±0. 45 Ma、28. 45±0. 56 Ma、28. 55±0. 43Ma、28. 63±0. 45 Ma、28. 65±0. 61 Ma)属渐新世。地球化学数据显示,霓辉粗面岩SiO_2质量分数均值为59. 05%,富碱、高钾,亏损大离子亲石元素(Sr、Ba、V、Cr),富集高场强元素(Nb、Ta、Hf、Zr)和轻稀土元素(LREE),∑REE含量很高,具有右倾型稀土分配型式,显示明显Eu负异常。研究表明,霓辉粗面岩是由碱性玄武质岩浆经强烈分离结晶作用形成的,揭示该区渐新世处于一种强烈的拉张环境,幔源岩浆经历了由碱性玄武岩-碱性粗面岩的演化过程。  相似文献   

13.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

14.
苏鲁超高压变质带北部威海地区发育大量中生代侵入体。本文报道了新的同位素稀释法和 SHRIMP 锆石 U-Pb 同位素年龄数据,确认该区中生代侵入岩浆活动主要有三期,分别是三叠纪晚期~210Ma,侏罗纪晚期160~140Ma 和白垩纪早期~110Ma。三叠纪晚期主要是橄榄安粗岩系列的侵入体,包括邢家碱性辉长岩(211±5Ma 和213±5Ma),甲子山辉石正长岩(211.9±1.5Ma 和209.0±6.5Ma),槎山正长花岗岩(205.7±1.4Ma),它们的形成可能指示深俯冲大陆的板片断离作用。侏罗纪晚期主要有垛崮山花岗闪长岩体(161±1Ma),文登花岗岩体(160±3Ma)和昆嵛山花岗岩体(142±3Ma)。大量700~800Ma 的继承锆石指示这些花岗岩是俯冲的扬子板块部分熔融的产物,它们可能起因于碰撞加厚地壳的拆沉作用。白垩纪早期的侵入体代表性的有六度寺辉石闪长岩(114.5±0.8Ma),秦薄顶钾长巨斑状花岗岩(114±1Ma),三佛山钾长斑状花岗岩(113±1Ma)和伟德山花岗岩(108±2Ma)。这些高钾钙碱系列侵入体,是中国东部普遍发育的岩石圈减薄过程中强烈的壳幔相互作用的产物。  相似文献   

15.
A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2  wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T  =610–660 °C and P =2.5–3.5  GPa (for X CO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions ( P >2.4  GPa, X CO<0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P – T  conditions of the amphibolitization stage are estimated at <0.9  GPa and <460 °C, and are similar to conditions recorded by the surrounding orthogneisses.  相似文献   

16.
The Alpine peridotite massif of Lanzo (Italy) contains three generations of basic dikes (gabbros and basalts). The older gabbros are plagioclase-rich mantle segregates while the younger gabbro dikes are cumulates very similar in chemical composition to recent oceanic gabbros and gabbros from ophiolitic complexes. They both were derived from the N-type mid-ocean ridge basalt (MORB) magmas which were progressively more depleted in incompatible elements and were probably generated during a dynamic melting of a rising mantle diapir. The basaltic dikes are the N-type MORB and closely resemble the Alpine-Apennine ophiolitic basalts. They were derived from a different upper mantle source than the parental magmas of the gabbros. The source of the basalts was less depleted in light REE. The presence of basic magmas with N-type MORB affinities in the Lanzo massif is consistent with the close genetic relationship between the Alpine peridotite body and the ophiolites of the Liguro-Piemontese basin.  相似文献   

17.
ABSTRACT

The Xilamulun Mo belt of Northeastern China, located in the southeastern segment of the Central Asia Orogenic Belt (CAOB), is composed of large deposits of porphyry Mo and quartz-vein-type Mo, which are related to Mesozoic granitoids. Previous studies led to the conclusion that all granitoids in the region formed during the Cretaceous and Triassic, but our new laser ablation inductively coupled plasma mass spectrometry U–Pb zircon dating of magmatic zircons from five samples of four mineralized plutons (Nailingou, Longtoushan, and Hashitu granites and Erbadi and Hashitu granite porphyries) reveals that these range in age from 143.8 ± 1.2 to 149.5 ± 1.0 Ma. These granites show post-collisional (A-type) geochemical characteristics (e.g. enrichment in total alkali, LILE, and LREE and depletion in Eu, Ba, P, and Nb). The Erbadi, Longtoushan, Hashitu, and Longtoushan granitoids exhibit moderately positive Hf isotopic compositions (εHf(t) = ?0.3 to 10.2), indicating that granitic magmas may reflect mixtures of mantle melts and continental crust. These mineralized granites were all emplaced along a major fault over a time span of ~6 million years during the Late Jurassic. We conclude that igneous activity and mineralization resulted from the rollback of the subducted Palaeo-Pacific plate beneath Eurasia. Confirming that the Late Jurassic granitic intrusives are related to the Mo mineralization is useful for understanding the Mesozoic tectonic evolution of the Xilamulun Mo belt and also has significant implications for the regional exploration of ores.  相似文献   

18.
Occupying the middle of the central Asia Paleozoic accretionary and collisional orogenic belt, the eastern Tianshan area has a great economic potential due to Au-Cu mineralization during syn- and post- orogenic events. In the Kanggurtag Au-Cu metallogenic belt, three major types of gold deposits have been recognized: ductile-shear-zone-hosted gold deposits, magmatic hydrothermal gold deposits, and epithermal gold deposits. Four kinds of copper deposits have also been identified recently: the porphyry-type, the skarn-type, the magmatic type, and volcanic/sedimentary-type. Tectonically, the development of these late Paleozoic gold and copper deposits was closely associated with the subduction and collision of the ancient Tianshan ocean that intervened between the Tarim craton and the Siberian block. In the early to mid-Carboniferous, N-dipping subduction beneath the Dananhu arc generated magmatic intrusions, leading to formation of the porphyry Cu deposits. The magmatic front migrated southward to form the Yamansu arc upon the Kanggurtag accretionary wedge. In the latest Carboniferous to early Permian, during the closure of the ancient Tianshan ocean, large mafic-ultramafic complexes were emplaced, resulting in several magmatic copper-nickel deposits. Gold deposits of the shear-zone-type are controlled by the Kanggurtag ductile shear zone, which is related to collisional orogenesis. The epithermal gold deposits are associated with extensional tectonics and post-tectonic volcanic activity. The tectonic settings, geological features, and temporal and spatial distributions of these different types of gold and copper deposits reflect, to a great extent, the accretionary and collisional tectonics that occurred between the northern margin of the Tarim block and the southern margin of the Siberian block.  相似文献   

19.
柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义   总被引:8,自引:7,他引:8  
本文报道了柴北缘大陆型超高压变质带沙柳河地区发现的蛇绿岩型地幔橄榄岩,其原始矿物组合为橄榄石+斜方辉石+铬铁矿。方辉橄榄岩中识别出两个世代的橄榄石,第一世代橄榄石7、(O1^1)残晶发育扭折带,化学成分与现代大洋地幔橄榄岩的橄榄石一致,第二世代橄榄石(O1^2)Fo值高达94~97,其内部含有细小的流体包裹体,是第一世代橄榄石蛇纹石化后再次变质的产物。斜方辉石残晶的成分具有高Al和Ca的特征,与大洋地幔橄榄岩中斜方辉石的成分一致。温压条件的估算反映该橄榄岩体属于典型的尖晶石相方辉橄榄岩。其围岩是由堆晶辉长岩变质的条带状蓝晶石榴辉岩,二者构成了大洋蛇绿岩套的下部层位,并且与区内具有N—MORB和OIB性质的榴辉岩共生。这些特征表明该方辉橄榄岩应代表洋壳下伏地幔橄榄岩,从而揭示大陆造山带从早期的大洋俯冲消亡到大陆俯冲碰撞的完整过程。  相似文献   

20.
It has long been debated that the Dabie orogenic belt belongs to the North China or Yangtze craton. In recent years, eastern China has been suggested, based on the Pb isotopic compositions of Phanerozoic ore and Mesozoic granitoid K-feldspar (revealing the crust Pb) in combination with Meso-Cenozoic basalts (revealing the mantle Pb), being divided into the North China and Yangtze Pb isotopic provinces, where the crust and mantle of the Yangtze craton are characterized by more radiogenic Pb. In this sense, previous researchers suggested that the pro-EW-trending Dabie crogenic belt with less radiogenic Pb in the crust was part of the North China craton. In this paper, however, the Late Cretaceous basalts in the central and southern parts of the Dabie orogenic belt are characterized by some more radiogenic Pb (206Pb/204Pb=17.936−18.349,207Pb/204Pb=15.500−15.688,208Pb/204Pb=38.399−38.775) and a unique U-Th-Pb trace element system similar to those of the Yangtze craton, showing that the Mesozoic mantle is of the Yangtze type. In addition, the decoupled Pb isotopic compositions between crust and mantle were considerably derived from their rheological inhomogeneity, implying a complicated evolution of the Dabie orogenic belt. The study was funded by the National Natural Science Foundation of China (No. 49794043) and the Open Laboratory of Constitution, Interaction and Dynamics of the Crust-Mantle System, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号