首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water samples were collected from Baffin Bay and surrounding areas in order to evaluate this region as a potential source of Nd from old continental material to Atlantic water. The isotopic data ranged from εNd(0) = −9.0 to −26 with most of the data around εNd(0) = −20 compared with values of North Atlantic Deep Water (NADW) with εNd(0) = −13.5. The concentration of Nd in Baffin Bay waters was as high as 6 × 10−12 g/g compared with 2.5 × 10−12 g/g for NADW. The combination of low εNd and high Nd concentration indicates that Baffin Bay may be a significant source of Nd from very old crustal material. A simple box model was used to evaluate the contribution to the Nd budget of NADW and it was concluded that a substantial fraction of the Nd from ancient crustal sources that is required to maintain the isotopic composition of NADW could be supplied by Baffin Bay outflow.  相似文献   

2.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   

3.
The Eocene/Oligocene boundary, at about 33.5 Myr ago, marks the transition from ‘greenhouse-’ to ‘icehouse-world’, accompanied by a sudden cooling of ocean bottom-water. We show that this global event is simultaneous with a deep rooted mantle process: an abrupt suppression of the Iceland plume triggered rapid deepening of the Greenland–Scotland Ridge (GSR) — the sill moderating deep circulation between the Nordic seas and North Atlantic. Striking coincidence of several sets of events reflects the abrupt suppression of the Iceland plume and a rapid removal of its influence on the nearby Reykjanes Ridge (RR): 1) A sudden segmentation of the paleo-RR seen on seafloor magnetic anomalies, 2) a drop in spreading rate of the North Atlantic, 3) a transition from thick to normal oceanic crust, and 4) a rapid deepening and accelerated subsidence of the GSR, inferred from the sedimentary record of DSDP site 336. The plume suppression and the concomitant GSR deepening coincide with the initiation of North Atlantic Deep Water (NADW) at the Eocene/Oligocene (E/O) transition, attested by onset of drift sedimentation in the Faroe–Shetland Channel (FSC), the deepest spill-point on the GSR, and in the North Atlantic, the Feni Drift. These processes have influenced global deepwater composition and temperature as indicated by the striking correlation with the jump in global δ18O (> 1‰) measured on benthic foraminifers that reflects the E/O global cooling, and with enrichment of unradiogenic Nd isotopes in the southeastern Atlantic and Southern Ocean. The initiation of Atlantic thermohaline circulation at that time is inferred from the abrupt split between planktonic and benthic δ18O, indicating the building of ocean-water stratification. This scenario is further corroborated by a reversal in benthic δ18O at the late Oligocene, coincident with the renewal of vigorous Iceland plume some 25 Myr ago, causing a considerable retardation in NADW fluxes. The plume renewal is inferred from the emergence of the Iceland plateau, the transition to oblique-unsegmented RR axis, the cessation in deepening of the GSR, and rapid increase in spreading rate of the North Atlantic. These events coincide with decreasing difference in planktonic–benthic in global δ18O by the late Oligocene. All these inferences suggest the role of the NADW sourced at the Nordic seas to form background cooler conditions in the long time scale since the early Oligocene, or to form permanent conditions of invigorated thermohaline circulation that forces CO2 trap in the oceans.  相似文献   

4.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

5.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   

6.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

7.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

8.
Our study gives new constraints on the response of Atlantic Meridional Overturning Circulation (AMOC) export to various forcings during the Last Glacial Inception. The decay corrected excess sedimentary (231Pa/230Th) activity ratio (hereafter referred to as (Pa/Th)) has been measured over that period in two deep cores from the Western (SU90-11, 44°04′N, 40°01′W, 3645 m) and Eastern (MD01-2446, 39°03′N, 12°37′W, 3547 m) basins of the North Atlantic. Both records display significant changes despite the relatively short half-life of 231Pa (~ 32 kyr) compared to the period we investigate. The (Pa/Th) variability does not correlate to changes in local opal flux normalized to 230Th. Moreover, the (Pa/Th) profiles display a high degree of coherency with indirect proxies of AMOC activity such as the benthic foraminifera δ13C and the mid-latitude summer Sea Surface Temperature in nearby reference cores. These additional pieces of evidence support our interpretation of the (Pa/Th) as reflecting AMOC export. The (Pa/Th) repeatedly underwent rapid changes during the Last Glacial Inception associated with the extension of ice rafted detritus in the North Atlantic, highlighting the control of ice-sheet dynamics through freshwater forcing on AMOC export. AMOC export remains large during periods of ice-sheet growth and its decreases lag the Northern Hemisphere summer insolation forcing. AMOC modulation appears driven by ice-sheet dynamics, itself driven by the seasonal insolation gradient between low and high Northern Hemisphere latitudes and the associated intensity of the meridional oceanic and atmospheric circulation.  相似文献   

9.
The evolution of interocean carbon isotopic gradients over the last 2.5 m.y. is examined using high-resolution δ13C records from deep sea cores in the Atlantic and Pacific Oceans. Over much of the Northern Hemisphere ice ages, relative reductions in North Atlantic Deep Water production occur during ice maxima. From 2.5 to 1.5 Ma, glacial reductions in NADW are less than those observed in the late Pleistocene. Glacial suppression of NADW intensified after 1.5 Ma, earlier than the transition to larger ice sheets around 0.7 Ma. At a number of times during the Pleistocene, δ13C values at DSDP Site 607 in the North Atlantic were indistinguishable from eastern equatorial Pacific δ13C values from approximately the same depth (ODP Site 677), indicating significant incursions of low δ13C water into the deep North Atlantic. Atlantic/Pacific δ13C values converge during glaciations between 1.13-1.05 m.y., 0.83-0.70 m.y., and 0.46-0.43 m.y. This represents a pseudo-periodicity of approximately 300 kyr which cannot easily be ascribed to global ice volume or orbital forcing. This partial decoupling, at low frequencies, of the δ18O and δ13C signals at Site 607 indicates that variations in North Atlantic deep water circulation cannot be viewed simply as a linear response to ice sheet forcing.  相似文献   

10.
High resolution benthic foraminiferal stable isotopes (δ18O, δ13C) and molecular biomarkers in the sediments are used here to infer rapid climatic changes for the last 8200 years in the Ría de Muros (NW Iberian Margin). Benthic foraminiferal δ18O and δ13C potentially register migrations in the position of the hydrographic front formed between two different intermediate water masses: Eastern North Atlantic Central Water of subpolar origin (ENACWsp) and subtropical origin (ENACWst). The molecular biomarkers in the sediment show a strong coupling between continental organic matter inputs and negative δ13C values in benthic foraminifera. The rapid centennial and millennial events registered in these records have been compared with two well known North Atlantic Holocene records from the subtropical Atlantic sea surface temperatures (SST) anomalies off Cape Blanc, NW Africa and the subpolar Atlantic (Hematite Stained Grains percentage, subpolar North Atlantic). Comparison supports a strong link between high- and low-latitude climatic perturbations at centennial–millennial time scales during the Holocene. Spectral analyses also points to a pole-to-equator propagation of the so-called 1500 yr cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin has undergone a series of rapid events which are likely triggered at high latitudes in the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the propagation of these rapid climatic changes involves a shift in atmospheric and oceanic circulatory systems.  相似文献   

11.
Well-preserved metalliferous sediments and pillow basalts of Lower Ordovician age (ca. 490 Ma) have been studied in an attempt to specify the Nd isotopic composition of Iapetus seawater. Initial143Nd/144Nd ratios of the pillow basalts are indistinguishable from published initial ratios for the 505-Ma Bay of Islands ophiolite complex and are within the anticipated range for MORB-type basalts 500 Ma ago. Metalliferous sediments occur both interstitial to basalt pillows and as well-developed sedimentary accumulations. The initial143Nd/144Nd ratios for the non-interstitial variety range from 0.511851 to 0.511712 Nd = ?2.7to?5.4) and are considered to provide an estimate of143Nd/144Nd in Iapetus seawater. The interstitial metalliferous sediments show evidence for a significant basalt-derived Nd component. Although volcanic activity occurred at the margin of Iapetus essentially contemporaneous with the formation of the metalliferous sediments, it is clear that arc-type volcanic material was not a major source of Nd in Iapetus seawater. Rather the source of Nd was from continental regions with a similar average age to those supplying material to the present-day Atlantic Ocean.  相似文献   

12.
A large sediment deposit known as the Meiji Drift, located in the northwestern Pacific Ocean, is thought to have formed from deep water exiting the Bering Sea, although no notable deep water forms there presently. We determine the terrigenous sources since 140 ka to the drift using bulk sediment 40Ar–39Ar and Nd isotopic analyses on the silt-sized (20–63 μm) terrigenous fraction from Ocean Drilling Program (ODP) Site 884 to reconstruct paleo-circulation patterns. There are large changes in both isotopic tracers, varying on glacial–interglacial cycles. During glacial intervals, bulk sediment 40Ar–39Ar ages range between 40 and 80 Ma, while Nd isotopic values range from εNd = ? 1 to + 2. During interglacial intervals, sediments become much younger and more radiogenic, with bulk sediment ages falling to 2–15 Ma and Nd isotopic values ranging between εNd = + 5 and + 9. These data and quantitative comparison to potential source rocks indicate that the young Kamchatkan and Aleutian Arcs, lying NW and NE of the Meiji Drift, contribute the majority of sediment during interglacials. Conversely, older source rocks, such as those drained by the Yukon River and northeast Russia are the dominant origin of sediments during glacials. Mixing model calculations suggest that as much as 35–45% of the sediment deposited in the Meiji Drift during glacials is from the Bering Sea. It remains unclear whether thermohaline-type circulation or focussing of Bering Sea flow lead to the glacial–interglacial sediment source changes observed here.  相似文献   

13.
New data from three Tasman Sea cores support Keigwin's [1] observation that the δ13C of Pacific benthic foraminifera (and by inference bottom-water TCO2) decreased by 0.7‰ at about 6.5 Myr B.P. Simple box models are developed and used to test several hypotheses about the cause of the δ13C decrease. We favor the idea that the δ13C shift was due to a rapid change in TCO2 cycling within the oceans (such as would result from either a decrease in upwelling rate, or an increase in the fraction of PO43? reaching the deep oceans in particulate organic matter and a corresponding drop in the preformed PO43? concentration). The δ13C decrease across the shift might reflect either a global decrease in upwelling rate, or a different abyssal circulation pattern before the shift.  相似文献   

14.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   

15.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

16.
Nd and Sr isotope determinations on late Precambrian to early Palaeozoic igneous and sedimentary rocks from the Arabian Shield are used to investigate the proportion of reworked “older” crust, and the rate at which new crust was generated during the Pan African event. Eight Rb/Sr whole rock isochrons on igneous suites yield ages in the range 770?590 Ma and initial 87Sr/86Sr ratios of 0.7038?0.7023. These data confirm that magmatism in this area was largely restricted to the period 850-550 Ma, and the initial ratios are sufficiently low to preclude significant contributions from a long-lived upper crustal source. The initial 143Nd/144Nd ratios of a variety of lithologies, including several samples of possible “basement”, are all higher than the contemporaneous values for CHUR (εNd = +1.6 to +6.9), suggesting that many were derived directly from the upper mantle, and that any inferred crustal source regions for the remainder could not have separated from likely LREE-depleted mantle reservoirs before 1200 Ma. The Arabian Shield therefore provides an example of rapid crustal growth during the Late Proterozoic, and contrasts with the Damara intracratonic belt of Namibia where Nd and Sr isotopes provide strong evidence for extensive reworking of older continental crust during the same period.  相似文献   

17.
Little is known about the spatial and temporal variability of the stable isotopic composition of precipitation in the North Atlantic and its relationship to the North Atlantic Oscillation (NAO) and anthropogenic climate change. The islands of the Azores archipelago are uniquely positioned in the middle of the North Atlantic Ocean to address this knowledge gap. A survey of spatial and temporal variability of the stable isotope composition of precipitation in Azores is discussed using newly presented analyses along with Global Network of Isotopes in Precipitation data. The collected precipitation samples yield a new local meteoric water line (δ2H = 7.1 * δ18O + 8.46) for the Azores region and the North Atlantic Ocean. The annual isotopic mean of precipitation shows a small range for the unweighted and precipitation mass‐weighted δ18O‐H2O values. Results show an inverse relation between the monthly δ18O‐H2O and the amount of precipitation, which increases in elevation and into the interior of the island. Higher amounts of precipitation (from convective storm systems) do not correspond to the most depleted values of stable isotopes in precipitation. Precipitation shows an orographic effect with depleted δ18O‐H2O values related to the Rayleigh effect. Monthly δ18O‐H2O values for individual precipitation sampling stations show little relationship to air temperature. Results show a local source of moisture during the summer with the characteristics of the first vapour condensate. The stable isotope composition of precipitation is strongly correlated to the NAO index, and δ18O‐H2O values show a statistically significantly trend towards enrichment since 1962 coincident with the increased air temperature and relative humidity due to climate change. Results are in line with observations of increasing sea surface temperature and relative humidity.  相似文献   

18.
The REE content and isotopic composition of Sr and Nd have been determined in fish teeth ranging in age from the Trias to the present and from various localities mostly around the Atlantic. These measurements have been carried out on Selachian and Teleost remains from the same locality in Togo and show no appreciable difference, which suggests, with the help of a mass balance calculation of the Ce anomaly, that diagenetic effects are not responsible for the REE enrichment of biogenic phosphates.One group of fossil teeth has about 3 times the REE abundances of shale and a shale-normalized pattern with a minimum at Sm: it is thought to reflect deposition in the open-sea environment. A second group has REE concentration about 10 times higher than the first group with either a regular light REE enrichment or, more frequently, a maximum in the middle REE, both being probably indicative of deposition in estuarine or near-shore conditions. The shape of the REE spectra and the size of the Ce anomaly can be used semi-quantitatively to determine the depth of deposition. The results presented here on Late Cretaceous/Eocene fish teeth samples from Morocco reflect an increasing influx of deep waters with a lowLa/Yb ratio and strong negative Ce anomaly, which agrees well with the evolution of sediment chemistry and microfauna associations.In contrast, Nd is typical of the water mass in which the fish debris decayed. Examples of nearly isolated basins identified with Nd isotopes include the South Atlantic prior to the Lutetian (Nd ≈ −13.5), the Miocene Persian Gulf (Nd = −3.1), and Bolivia during the Late Cretaceous (Nd = −12.8). Togo and Guinea-Bissau results suggest that, in the South Atlantic, the meridional oceanic circulation had not started before 45 Ma ago.Combination of REE andNd data suggests that the assignment of Jurassic-Cretaceous samples measured so far to open-sea water masses is still ambiguous.  相似文献   

19.
Archean komatiites, high-Mg basalts and tholeiites from the North Star Basalt and the Mount Ada Basalt formations of the Talga-Talga Subgroup, Warrawoona Group, Pilbara Block, Western Australia, define a linear correlation on the normal143Nd/144Nd vs.147Sm/144Nd isochron plot. The data give an age of 3712 ± 98 Ma and initialεNd(T) of +1.64 ± 0.40. The 3712 ± 98 Ma date is consistent with the regional stratigraphic sequence and available age data and the SmNd linear array may be interpreted as an isochron giving the eruption age of the Talga-Talga Subgroup. An alternative interpretation is that the isochron represents a mixing line giving a pre-volcanism age for the Subgroup. Consideration of geochemical and isotopic data indicates that the true eruptive age of the Talga-Talga Subgroup is possibly closer to about 3500 Ma. Regardless of the age interpretation, the new Nd isotopic data support an existence of ancient LREE-depleted reservoirs in the early Archean mantle, and further suggest that source regions for the Pilbara volcanic rocks were isotopically heterogeneous, withεNd(T) values ranging from at least 0 to +4.0.  相似文献   

20.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号