首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
扬子地块奥陶系碳酸盐岩重磁化机制探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
碳酸盐岩是记录古地磁场信息的重要载体,然而,广泛存在的重磁化现象制约了碳酸盐岩在古地磁研究中的应用,其重磁化机制亟待解决.本文对采自贵州羊蹬地区的319块奥陶系碳酸盐岩定向样品作了详细的古地磁学和岩石磁学研究,其结果表明,94%样品(A类)记录了单一剩磁分量A,其解阻温度低于450℃;在地理坐标系下的平均方向为Dg/Ig=3.1°/48.1°(α95=2.9°),对应的古地磁极(87.0°N,2.8°E,A95=3.0°)与扬子地块古近纪-第四纪的古地磁极重合.6%样品(B类)记录了两个磁化分量,其高温分量(450℃~585℃)与A分量显著不同,但明显远离扬子块体早古生代古地磁极;低温分量(< 450℃)与A分量类似.说明羊蹬剖面奥陶系碳酸盐岩记录了两期重磁化.A分量和B低温分量的主要载磁矿物为磁黄铁矿(胶黄铁矿),B高温分量的主要载磁矿物为磁铁矿.这些磁性矿物都是成岩后的次生矿物.其中,解阻温度高于450℃的磁铁矿可能受晚燕山期造山运动影响生成;磁黄铁矿(胶黄铁矿)等矿物可能与印度板块与欧亚大陆碰撞引起的喜马拉雅造山运动所产生的流体作用有关,以后一期重磁化为主.新生代早期青藏高原隆升产生的流体在流经东南缘的碳酸盐岩等沉积岩层时,与原岩发生相互作用,使磁黄铁矿、胶黄铁矿、磁铁矿等磁性矿物生长并获得化学剩磁,造成了广泛重磁化.  相似文献   

2.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

3.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling: Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

4.
~~New paleomagnetic and magnetic fabric results for Early Cretaceous rocks from the Turpan intramontane basin,east Tianshan,northwest China~~  相似文献   

5.
Although paleomagnetic study of the Early Paleozoic for the North China Block (NCB) has witnessed rapid progress since the 1980s, significant difference in the results can be found from the widespread areas in North China. Besides the paleomagnetic techniques used in the laboratories, the difference of these Paleozoic poles could also be due to the early and late Mesozoic remagnetization in the eastern part of China. It is therefore necessary to carry out systematic paleomagnetic and rock magnetic studies for the Early Paleozoic rocks in the NCB. The remagnetizarion re-sults from the northwestern part of Henan Province are reported, and related geological implications are discussed.  相似文献   

6.
海南岛早白垩世红层磁组构和古地磁新结果   总被引:1,自引:1,他引:1       下载免费PDF全文
张伙带  谈晓冬 《地球物理学报》2011,54(12):3246-3257
海南岛白垩纪红层是迄今产出古地磁结果最多的地层,但古地磁结果难以在海南岛周边古地磁结果和地质限制条件下作出合理解释.为了更好地认识海南岛白垩纪红层古地磁方向的可靠性,我们对采自前人工作地区的14个采点132个样品开展了古地磁和磁组构的综合研究.磁化率各向异性测试显示14个采点样品平均各向异性度为1.018,线理度为1....  相似文献   

7.
磁性地层学是界定沉积物地质年代的一种重要方法,该方法的应用建立在沉积物记录了可靠的特征剩磁基础上.红层的磁性地层年代学研究对于我国华南地区晚中生代以来古环境、古气候的演化具有极为重要的意义.但是,目前对于红层古地磁可靠性的解释存在广泛的争议,为更好地理解并尝试解决具体红层剖面的古地磁可靠性问题,迫切需要综合岩石磁学和其他非磁学手段对沉积物中的载磁矿物性质进行系统厘定.本文通过对赣南地区两个典型晚白垩纪红层剖面(信丰XF剖面和留车LC剖面)进行详细的岩石磁学分析,并结合扫描电镜和沉积相特征,判定出磁性矿物以赤铁矿为主,含有少量针铁矿、磁赤铁矿和磁铁矿.其中,赤铁矿是最主要的剩磁载体,且与钛铁矿共存,综合磁学与非磁学结果判定其记录了原生的沉积剩磁.在获得了可靠的古地磁信息基础上,结合前人对该区域生物地层学和年代学研究并与邻区地层比对,初步判断出LC剖面与XF剖面地质年代分别为晚白垩纪早期Cenomian期和晚白垩纪晚期Maastrichtian期.XF剖面依据ESR测年、南雄盆地地层比对和沉积相的判断,地层极性时段初步界定为C30n,即68.196~66.398 Ma,这为进一步探讨该地区的古环境和古气候演化提供了可参考的年龄标尺.  相似文献   

8.
Widespread Cretaceous remagnetization is documented in several Mesozoic basins in North Central Spain. Organyà Basin (South Central Pyrenean foreland) is atypical in the sense that the lower part of the rock sequence (Berriasian-Barremian limestones) is remagnetized while the upper portion (Aptian-Albian marls) is not (Dinarès-Turell and García-Senz, 2000). Here, this view is confirmed by the analysis of 41 new paleomagnetic sites over the entire basin, so that a 3D view is obtained. Thermoviscous resetting of the natural remanent magnetization can be ruled out, hence the remagnetization is chemical in origin. A positive breccia-test on remagnetized strata constrains the remagnetization age to older than the Paleocene-Eocene, when the backthrust system was active. The remagnetization is argued to have occurred early in the geological history of the Organyà Basin either in the elevated geothermal gradient regime during the syn-rift extension or at the earliest phase of the later compression. Burial is considered the most important cause combined with the lithological effect that limestones are more prone to express remagnetization than marls. The observed pressure solution in the remagnetized limestone is likely associated with the remagnetization, whereas it is unlikely that externally derived fluids have played an important role.  相似文献   

9.
Nine Early Cretaceous paleomagnetic sites have been collected in the Yumen area of the Hexi Corridor (NW China). Magnetic directions isolated at lower temperatures fail the fold test, and lie close to the geocentric axial dipole field direction before tilt correction. High temperature components are carried by magnetite and/or hematite, all with normal polarity, and pass the fold test. The average paleomagnetic pole from the nine sites is at λ=75.5°N, φ=169.9°E (A95=7.7°). These results are consistent with those from other areas of the North China block (NCB), but significantly different from those from the Qaidam Basin on the southern side of the Qilian Mountains. They suggest that: (1) the Yumen region behaved as a rigid part of the NCB since at least the Early Cretaceous; (2) 740±500 km of north-south directed convergence has taken place between the NCB and Qaidam, within the Qilian Mountains and (3) extrusion of Qaidam was accompanied by a 23±5° relative rotation with respect to North China. This is larger than implied by the maximum left lateral slip on the Altyn Tagh fault system. The same data imply some 1000±800 km of Cenozoic motion between the Tarim and NCB blocks, which were so far believed to have formed a rigid entity since at least the Jurassic. One interpretation could be that all Tarim and Qaidam Cretaceous paleomagnetic samples from red beds, but not those from Yumen and the NCB, suffered significant inclination shallowing, as observed in Cenozoic red beds from Central Asia. So far, we do not find support for this possibility. Possible tectonic interpretations include: (1) the existence of a large, as yet uncharted, tectonic discontinuity between Tarim and the NCB in the vicinity of the desert corridor near 95-100°E longitude; (2) the occurrence of significant deformation within southwestern Tarim, to the north of Yingjisha where paleomagnetic sites were obtained, or (3) persistent clockwise rotation of Tarim with respect to the NCB, for at least 20 Ma, at the rate found for current block kinematics.  相似文献   

10.
The Bakjisan Syncline is located in the northwestern part of the Taebaeksan Basin, Korea. New paleomagnetic data for the Upper Carboniferous–Lower Triassic Pyeongan Supergroup from the Pyeongchang area on the west limb of the Bakjisan Syncline have been obtained, and synthesized and compared with previous data from the Jeongseon area on the east limb of the syncline. A total of 350 specimens were collected from 21 sites to clarify the relationship between the spatial distribution of remagnetized areas and the thrust system in the Taebaeksan Basin. The characteristic remanent magnetization (ChRM) isolated from all samples was a remagnetized component acquired after tilting of the strata and carried by various magnetic minerals (magnetite, hematite and pyrrhotite). From rock magnetic studies, electron microscope observations and XRD analyses, the pervasive remagnetization is interpreted to be associated mainly with a fluid-mediated chemical remanent magnetization (CRM). This is consistent with the results of previous work in adjacent areas. The paleomagnetic pole position (88.3°E, 83.9°N, A95 = 4.9°) from the Pyeongan Supergroup in the Bakjisan Syncline indicates that the timing of the remagnetization event is Early Tertiary times (i.e. Paleocene to Eocene) by comparison with reliable paleopoles from the Korean Peninsula. Early Tertiary CRMs are also reported from previous studies of an adjacent region within the northwestern part of the Taebaeksan Basin. In contrast, a primary remanent magnetization was reported in the southeastern part of the Taebaeksan Basin. This implies that the major thrust system (the Gakdong thrust) which separates the two regions has caused them to experience substantially different geologic histories since deposition of the strata. Since many thrusts with NS trend are observed in the northwestern part of the Taebaeksan Basin compared with the southeastern region, it appears that the remagnetizing fluids pervasively penetrated the northwestern part of the basin by utilizing the already well-developed thrust system.  相似文献   

11.
No paleomagnetic data exist for Paleo-Mesoproterozoic times of the West African Craton (WAC). Therefore, paleogeographic reconstructions for such old geological times are difficult to constrain. Gaps on the sedimentary record and intense remagnetizations are the major problems that paleomagnetic studies come across. Recent geochronological results for dyke swarms that intrude several Proterozoic inliers of WAC in the Anti-Atlas Belt (southern Morocco) revealed ages between Paleoproterozoic and early Neoproterozoic, opening for the first time a window of opportunity to conduct paleomagnetic studies and tentatively infer about the paleoposition of WAC during Proterozoic. On this scope we conducted a paleomagnetic study on seven Proterozoic dykes of the Iguerda inlier. The meaning of the obtained paleomagnetic directions was evaluated by rock magnetic and mineral analyses, complemented by petrographic observations. Our samples record the presence of a complex history of remagnetization, mostly assigned to several Phanerozoic thermal/chemical events, in particular to the late stages of Pan African orogeny (s.l.), to the Late Carboniferous Variscan orogeny, and even to more recent events. The recognized remagnetization processes are related to widespread metamorphic events under greenschist facies followed by low-temperature oxidation, both responsible for the formation of new magnetic phases, like magnetite and hematite. These events obliterated the primary (magmatic) thermo-remanent magnetization and promoted multiple remagnetizations of the dykes, thermally and chemically. For only one dyke the presence of primary magnetization is possible to infer, though not to confirm, and would place WAC at an equatorial position around 1750 Ma.  相似文献   

12.
Paleomagnetic and rock magnetic study has been conducted on the Early Triassic red beds of Liujiagou Formation from Jiaocheng, Shanxi Province. Hematite was shown as the main magnetic mineral. After eradicating an initial viscous component at room temperature to ~100°C–200°C, thermal demagnetization shows that most samples contain two remanence components, intermediate-temperature remanence component at 250°C–500°C and high-temperature component at 500°C–680°C. The intermediate-temperature component has a negative fold test at the 95% confidence level. And the pole position of the intermediate-temperature component in geographic coordinates is correlated with the Middle Jurassic reference pole of the North China Block (NCB) within the 95% confidence, suggesting that it might be a remagnetization component acquired during the Yanshanian period. The high-temperature component contains both reversal and normal polarities with positive fold test and C-level positive reversal test at the 95% confidence level, which suggests that this high-temperature component can be regarded as primary magnetization. Comparison of this newly obtained Early Triassic paleopole with the coeval mean pole of the Ordos Basin suggests that a locally relative rotation may have happened between the Ordos and the Jiaocheng area of Shanxi Province. This rotation may be related with two faults: one is Lishi big fault separating Ordos from Shanxi and the other is Jiaocheng big fault, which is situated in the southeast of sampling locality and was still in motion during the Cenozoic.  相似文献   

13.
Summary A reconnaissance paleomagnetic study of Hispaniola shows that three igneous units in the Dominican Republic possess meaningful directions of magnetism. A Late Cretaceous tonalite, an Eocene pyroxene diorite and a Miocene andesite porphyry have been investigated. The rock material studied is fresh, and has not been affected by secondary oxidation except in the case of the andesite which is occasionally weathered and reveals some hydrothermal alteration. Alternating field and thermal demagnetization result in removal of viscous remanence in some samples, while others reveal a good stability of NRM and little change in direction. The results disclose directions of magnetization substantially different from that of the present earth's field in Hispaniola and from those obtained from contemporaneous rocks of North America. They yield paleomagnetic poles at 23.1° N, 144.9° W for the Cretaceous tonalite and at 17.4° N, 138.0° W for the Eocene diorite, the positions of which are not significantly different from each other, suggesting no change of geomagnetic field direction during the two epochs. These poles have generally similar positions to those obtained from Late Cretaceous rocks on Jamaica and Puerto Rico. The Miocene data fall into two groups, one having a direction corresponding to a pole closely coinciding with the Miocene North American pole and the other giving a paleomagnetic pole at 68.3° N, 151.9° W coinciding with the Miocene pole for Jamaica. Paleotectonic interpretation of the results suggests that like other Greater Antilles, Hispaniola has been subject to large anticlockwise rotation since Late Cretaceous.  相似文献   

14.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

15.
运用主成分分离及线性区段等方法 ,使早白垩世样品明显分离出二组磁组分 .叠加剩磁为喜山期重磁化 ,特征剩磁明显偏离现代地磁场方向 ,经倾斜校正后 ,有很好的一致性并通过了倒转检验 ,给出塔里木地块库车坳陷早白垩世巴西盖组古地磁新数据 .综合已有的古地磁结果 ,获得了塔里木地块早白垩世平均剩磁方向及平均古地磁极 ,阐明了塔里木地块早白垩世磁倾角明显偏低这一现象 .分析导致磁倾角偏低的诸多因素 ,认为压实作用可能是导致磁倾角偏低的重要因素之一 .  相似文献   

16.
鄂尔多斯地块构造演化的古地磁学研究   总被引:15,自引:0,他引:15       下载免费PDF全文
鄂尔多斯地块与中朝地台其它地区相同时代地层的古地磁结果基本一致表明:晚二叠世以来,中朝地台经历了从低纬度(19°左右)向中纬度的北移过程,并伴有50°左右的逆时针旋转;晚二叠世—中三叠世地台北移10°(1000km)左右,而方位基本未变;中三叠世—中侏罗世主要发生50°左右的逆时针旋转,而北向位移不明显,这一旋转可能与杨子地台和中朝地台碰撞拼合有关,或者说是印支运动在该地区的反应,中侏罗世—早白垩世地块已基本和现代位置一致  相似文献   

17.
Abstract Sandstones from the Upper Cretaceous to Eocene succession of Central Palawan are rich in quartz grains and acidic volcanic rock fragments. Potassium feldspar grains and granitic rock fragments are commonly observed. The moderate to high SiO2 and low FeO plus MgO contents of the sandstones support the proposal that clasts were derived from a continental source region. Southern China (Kwangtung and Fukien regions) is inferred to be the source area of the sandstones. The sedimentary facies of the Upper Cretaceous to Eocene succession consist of turbidite and sandstones, suggesting that they were deposited in the deep sea portions of submarine-fans and basin plains situated along a continental margin. These features indicate that the Upper Cretaceous to Eocene succession of the Central Palawan were derived and drifted from the southern margin of China. The tectonic history related to the formation of Palawan Island is also discussed.  相似文献   

18.
灵宝盆地位于华北板块南缘与秦岭造山带之间,是豫西北一系列北东-南西向断陷盆地之一.盆地内沉积地层主体为一套厚约2000m陆相碎屑岩夹泥灰岩、薄煤层沉积.本文根据盆地内的恐龙蛋、介形虫、腹足类、哺乳动物化石及少量孢粉等,将地层自下而上划分为下白垩统枣窳组、上白垩统南朝组、古近系古新统-下始新统项城群、中始新统川口组、上始新统庄里坡组及新近系上-中新世(组名暂未定)等6个地层单元.研究表明:下、上白垩统之间及其与项城群之间为不整合或超覆,上中新统与川口组或庄里坡组为不整合接触,整个地层是一套河流相沉积、局部洪泛洼地或小浅湖相沉积.  相似文献   

19.
The new paleomagnetic data on forty dikes and two intrusive plutons of Devonian age located in different parts of the Kola Peninsula, which have not been previously covered by systematic paleomagnetic studies, are reported. We describe the results of the rock magnetic, petrographic, and microprobe investigations of the Devonian dikes and present their isotopic ages (40Ar/39Ar, stepwise heating). Within the studied area, almost all the Devonian dikes, metamorphic Archaean-Proterozoic complexes of the Fennoscandian Shield, and Proterozoic dikes have undergone low-temperature hydrothermal-metasomatic alteration, which resulted in the formation of new magnetic minerals with a secondary (chemical) component of magnetization. The comparison of the paleomagnetic poles indicates the Early Jurassic age of the secondary component. We suggest that regional remagnetization event was caused by endogenic activity genetically related to the formation of the Barents Sea trap province 200–170 Ma ago. On the basis of the obtained data, the preliminary Devonian paleomagnetic pole of the East European Platform is determined.  相似文献   

20.
对我国西南地区思茅地体中部巍山和五印地区白垩纪地层进行了详细的岩石磁学和古地磁研究,获得了两个地区的高温剩磁分量并通过了褶皱检验.巍山剖面特征剩磁方向为Ds=64.3°,Is=48.5°,k=54.6,α95=4.7°;五印剖面特征剩磁方向为Ds=15.4°,Is=44.8°,k=212.0,α95=4.6°.通过思茅地体磁偏角变化与兰坪-思茅褶皱带构造线迹变化的相关性分析,确定思茅地体内部差异性旋转变形受控于思茅地体弧形构造带的形成和演化.通过青藏高原东南缘走滑断裂带活动年代分析,确定兰坪-思茅褶皱带蜂腰构造部位形成于两期构造事件,早期构造变形与东喜马拉雅构造结北北东向挤压缩进有关,后期构造变形与川滇微地块发生顺时针旋转时南向挤出运动有关.以华南板块稳定区白垩纪古地磁极为参考极,计算得出巍山和五印相对于华南板块分别发生了10.5°±6.0°和3.8°±4.9°的南向运移量.通过选取思茅地体内部构造形态较稳定的巍山和普洱地区白垩纪古地磁极为参考极,计算得出五印相对于巍山和普洱分别发生了3.4°±5.0°和3.1°±5.4°的北向纬向运移,表明五印和和巍山之间自印亚碰撞以来经历了较大规模的北向地壳缩短变形作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号