首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

2.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

3.
We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO2 contents in the melt inclusions extend to higher values (167–1596 ppm) than in the co-existing glasses (187–227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (~ 4 km) and ~ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25–40 km) and cold (1240°–1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9–20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model and the assumption that CO2 is perfectly incompatible, we show that the highest CO2 concentrations of the melt inclusions (~ 1600 ppm) are consistent with the calculated CO2 concentrations of primary undegassed melts. The highest measured CO2/Nb ratio (443) of Gakkel Ridge melt inclusions predicts a mantle CO2 content of 134 ppm and would result in a global ridge flux of 2.0 × 1012 mol CO2/yr.  相似文献   

4.
《Journal of Geodynamics》2008,45(3-5):160-172
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

5.
It is understood that sample size could be an issue in earthquake statistical studies, causing the best estimate being too deterministic or less representative derived from limited statistics from observation. Like many Bayesian analyses and estimates, this study shows another novel application of the Bayesian approach to earthquake engineering, using prior data to help compensate the limited observation for the target problem to estimate the magnitude of the recurring Meishan earthquake in central Taiwan. With the Bayesian algorithms developed, the Bayesian analysis suggests that the next major event induced by the Meishan fault in central Taiwan should be in Mw 6.44±0.33, based on one magnitude observation of Mw 6.4 from the last event, along with the prior data including fault length of 14 km, rupture width of 15 km, rupture area of 216 km2, average displacement of 0.7 m, slip rate of 6 mm/yr, and five earthquake empirical models.  相似文献   

6.
《Journal of Geodynamics》2008,46(4-5):163-168
The reactivation of the Chelungpu fault triggered the 20 September 1999 Chi-Chi Taiwan earthquake (Mw = 7.6) which caused a 100-km long surface rupture that trends north–south. We reconstruct the fault geometry using 1068 planar triangular dislocation elements that approximate more realistically the curved three-dimensional fault surface. The fault slip distribution is then determined with the observed GPS coseismic displacements as well as interferometric synthetic aperture radar (InSAR) data. The results show that our smooth 3D fault slip model has improved the fit to the geodetic data by 44% compared with the previously published inversions. The slip distribution obtained both by inversion of GPS data only and by joint inversion of GPS and InSAR data indicates that notable slips occur on the sub-horizontal décollement at the depth of 6.1–8.9 km.  相似文献   

7.
We used GPS velocities from approximately 700 stations in western China to study the crustal deformation before the Wenchuan MS8.0 earthquake. The processing methods included analyses of the strain rate field, inversion of fault locking and the GPS velocity profiles. The GPS strain rate in the E-W direction in the Qinghai-Tibet block shows that extensional deformation was dominant in the western region of the block (west of 92.5° E), while compressive deformation predominated in the eastern region of the block (from 92.5° E to 100° E). On a regional scale, the hypocentral region of the Wenchuan earthquake was located at the edge of an intense compression deformation zone of about 1.9 × 10−8/a in an east-west direction. The characteristic deformation in the seismogenic fault was compressive with a dextral component. The compression deformation rate was greater in the fault's western region than in its eastern region, and the strain accumulation was very slow on the fault scale. The results of a fault locking inversion show that the locking fraction and slip deficit was greater in the middle-northern section of the seismogenic fault than in the southern section. The GPS velocity profile before the Wenchuan earthquake shows that the compression deformation was smaller than the dextral deformation, which is asymmetrical with respect to the distribution of co-seismic displacement. These deformation characteristics should provide some clues to the Wenchuan earthquake which occurred in the later period of the earthquake cycle.  相似文献   

8.
In view of an anomalous crust–mantle structure beneath the 2001 Bhuj earthquake region, double-difference relocations of 1402 aftershocks of the 2001 Bhuj earthquake were determined, using an improved 1D velocity model constructed from 3D velocity tomograms based on data from 10 to 58 three-component seismograph stations. This clearly delineated four major tectonic features: (i) south-dipping north Wagad fault (NWF), (ii and iii) south-dipping south Wagad faults 1 and 2 (SWF1, SWF2), and (iv) a northeast dipping transverse fault (ITF), which is a new find. The relocated aftershocks correlate satisfactorily with the geologically mapped and inferred faults in the epicentral region. The relocated focal depths delineate a marked variation to the tune of 12 km in the brittle–ductile transition depths beneath the central aftershock zone that could be attributed to a lateral variation in crustal composition (more or less mafic) or in the level of fracturing across the fault zone. A fault intersection between the NWF and ITF has been clearly mapped in the 10–20 km depth range beneath the central aftershock zone. It is inferred that large intraplate stresses associated with the fault intersection, deepening of the brittle–ductile transition to a depth of 34 km due to the presence of mafic/ultramafic material in the crust–mantle transition zone, and the presence of aqueous fluids (released during the metamorphic process of eclogitisation of lower crustal olivine-rich rocks) and volatile CO2 at the hypocentral depths, might have resulted in generating the 2001 Bhuj earthquake sequence covering the entire lower crust.  相似文献   

9.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

10.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

11.
Although offset and age data from displaced landforms are essential for identifying earthquake clusters and thus testing whether faults slip at uniform or secularly varying rates, it is not clear how the uncertainties in such measurements should be propagated so as to yield a robust fault-slip history (i.e., record of fault displacement over time). Here we develop a Monte Carlo approach for estimating the distribution of geologically reasonable fault-slip histories that fit the offset and age data from a population of dated and displaced landforms. The model assumes that the landforms share common faulting histories, the offset and age constraints are correct, and the fault has not reversed shear sense. Analysis of the model results yields both a precise average slip rate, in the case where a linear fit is applied to the data, and a best-fit fault-slip history, in the case where the linear constraint is removed. The method can be used to test for secular variation in slip because the uncertainty on this best-fit history is quantified. By applying the method to previously published morphochronologic data from faulted late Quaternary terrace risers along the Kunlun fault in China and the Awatere fault in New Zealand, we have assessed the extent to which our modeled average slip rates match previously reported values and the data support previous interpretations of uniform slip rate. The Kunlun data set yields average slip rates of 8.7 + 3.6/?2.1 mm/yr and 5.1 + 1.6/?1.2 mm/yr (68.27% confidence), for the central and eastern reaches of the fault, respectively, both of which match previously published slip rates. Our analysis further indicates that these fault reaches have both slipped uniformly over the latest Quaternary. In contrast, analysis of data from the Saxton River site along the Awatere fault reveals a mid-Holocene deceleration in slip rate from 6.2 + 1.6/?1.4 mm/yr to 2.8 + 1.0/?0.6 mm/yr. This result contradicts previous interpretations of uniform slip along the Awatere fault. The Monte Carlo method we present here for quantifying fault-slip histories using the offset and age data from a population of faulted landforms provides an important tool for distinguishing temporally uniform from secularly varying fault slip.  相似文献   

12.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

13.
Inland waters are sites of intense carbon processing, stocking and transport. We examined the influence of waterfall-turbulence on CO2 partial pressures (pCO2) before and after waterfalls in a tropical river. The results indicated a 51.4% decrease of pCO2 from up (1375 ± 320 ppm) to downriver (655 ± 58 ppm), suggesting an unaccounted degassing promoted by waterfall-turbulence. This process needs to be better understood in order to more accurately determine the role of freshwater environments in the global carbon balance.  相似文献   

14.
In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 (222Rn) as a proxy of ventilation to estimate CO2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO2 concentrations vary seasonally between winter (222Rn = 50 dpm L? 1, where 1 dpm L? 1 = 60 Bq m? 3; CO2 = 360 ppmv) and summer (222Rn = 1400 dpm L? 1; CO2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn (222Rn = 6 to 581 dpm L? 1; CO2 = 360 to 2500 ppmv).We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a ‘venturi’ effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h? 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h? 1 (22 min turnover time). We estimate net CO2 flux from the epikarst to the cave atmosphere using a CO2 mass balance model tuned with the 222Rn model. Net CO2 flux from the epikarst is highest in summer (72 mmol m? 2 day? 1) and lowest in late autumn and winter (12 mmol m? 2 day? 1). Modeled ventilation and net CO2 fluxes are used to estimate net CO2 outgassing from the cave to the atmosphere. Average net CO2 outgassing is positive (net loss from the cave) and is highest in late summer and early autumn (about 4 mol h? 1) and lowest in winter (about 0.5 mol h? 1). Modeling of ventilation, net CO2 flux from the epikarst, and CO2 outgassing to the atmosphere from cave monitoring time-series can help better constrain paleoclimatic interpretations of speleothem geochemical records.  相似文献   

15.
The present work describes the results of a modeling study addressing the geological sequestration of carbon dioxide (CO2) in an offshore multi-compartment reservoir located in Italy. The study is part of a large scale project aimed at implementing carbon capture and storage (CCS) technology in a power plant in Italy within the framework of the European Energy Programme for Recovery (EEPR). The processes modeled include multiphase flow and geomechanical effects occurring in the storage formation and the sealing layers, along with near wellbore effects, fault/thrust reactivation and land surface stability, for a CO2 injection rate of 1 × 106 ton/a. Based on an accurate reproduction of the three-dimensional geological setting of the selected structure, two scenarios are discussed depending on a different distribution of the petrophysical properties of the formation used for injection, namely porosity and permeability. The numerical results help clarify the importance of: (i) facies models at the reservoir scale, properly conditioned on wellbore logs, in assessing the CO2 storage capacity; (ii) coupled wellbore-reservoir flow in allocating injection fluxes among permeable levels; and (iii) geomechanical processes, especially shear failure, in constraining the sustainable pressure buildup of a faulted reservoir.  相似文献   

16.
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between ? 7.2‰ and ? 5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈ 0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).  相似文献   

17.
Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ∼57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M  3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10–20 km). As the mobilized fluid ascends through the brittle–plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.  相似文献   

18.
The 1939 Erzincan Earthquake (M = 7.8), occurred on the North Anatolian Fault Zone (NAFZ), was one of the most active strike-slip faults in the world, and created a 360-km-long surface rupture. Traces of this surface rupture are still prominently observed. In the absence of detailed mapping to resolve the fault characteristics, detailed observations have been conducted at 20 different points on the 70-km-long Kelkit Valley Segment (KVS) of the NAFZ's between Niksar and Koyulhisar. Field data defining fault character and slip amounts were found at eight points and show right-lateral slip varying between 1.8 and 4.25 m and the vertical slip varying between 0.5 and 2.0 m.The KVS developed in the most morphologically prominent and narrowest part of the NAFZ. Therefore, the chances of finding evidence of more than one historical earthquake in trenches opened to investigate palaeoseismological aspects are higher. Faults observed in foundation and channel excavations opened for energy purposes in the Reşadiye region show this clearly and evidence for up to four seismic events including the 1939 Erzincan Earthquake have been discovered. Further studies are required to discover whether right-lateral deformation on at some locations on this segment is surface ruptures associated with the 1939 earthquake or later creep.  相似文献   

19.
Space-based tectonic studies on the western part of the North Anatolian Fault Zone (NAFZ) have been conducted over two decades. After the August 17, 1999, Izmit earthquake (Mw = 7.4), this region attracted greater scientific interest, and the collected data became more valuable. The Geodesy Department of the Kandilli Observatory and Earthquake Research Institute (KOERI) at Bogazici University established three micro-geodetic networks to the east of Akyazi, east of Iznik, and west of Lake Sapanca in the eastern part of the Marmara region; GPS data have been continually collected at these locations since 1994. The NAFZ branches out in the western part of the Marmara region and extends up to the Aegean Sea. Segments of the fault passing through the Marmara Sea are considered active, and this has increased concern regarding imminent earthquakes. Conventional geodetic measurements made between 1990 and 1994 are not sufficient for monitoring small movements. However, GPS has played a very important role in detecting such deformations in the area after 1994. The Iznik network, with 10 points, is bilaterally located on the Iznik-Mekece fault. Six years of GPS data for 2004–2010 collected for the monitoring of crustal deformation showed that the Iznik-Mekece fault segment moves westward at about 22 ± 1 mm/yr with respect to the Eurasia fixed reference frame. The GPS observations show that there is no strain accumulation in the area.  相似文献   

20.
Seismic activity has been postulated as a trigger of volcanic eruption on a range of timescales, but demonstrating the occurrence of triggered eruptions on timescales beyond a few days has proven difficult using global datasets. Here, we use the historic earthquake and eruption records of Chile and the Andean southern volcanic zone to investigate eruption rates following large earthquakes. We show a significant increase in eruption rate following earthquakes of MW > 8, notably in 1906 and 1960, with similar occurrences further back in the record. Eruption rates are enhanced above background levels for ~ 12 months following the 1906 and 1960 earthquakes, with the onset of 3–4 eruptions estimated to have been seismically influenced in each instance. Eruption locations suggest that these effects occur from the near-field to distances of ~ 500 km or more beyond the limits of the earthquake rupture zone. This suggests that both dynamic and static stresses associated with large earthquakes are important in eruption-triggering processes and have the potential to initiate volcanic eruption in arc settings over timescales of several months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号