首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
太行山中段新生代玄武岩(7.8Ma)中发现具有明显环带结构的高Mg^#橄榄石。其中心部分明显富MgO和NiO,边缘FeO、MnO、CaO和Al2O3的含量较高。高Mg^#橄榄石中心部分(Mg^#=89.892.3)与华北新生代玄武岩所携带的橄榄岩捕虏体中高Mg^#橄榄石的组成接近,中间部分(Mg^#=84.5~89.7)略高于寄主玄武岩中斑晶橄榄石中心部分的组成(Mg^#=77.1~81.7),而高Mg^#橄榄石的边缘部分(Mg^#=55.6~73.6)和寄主玄武岩斑晶橄榄石边缘的组成(Mg^#=55.6~73.6)相一致,都接近于寄主玄武岩基质中橄榄石的组成(Mg^#=54.8~66.1)。橄榄石的化学成分环带及其所具有的熔蚀结构说明它是地幔橄榄岩的解体矿物,其大颗粒的中心部分能够代表地幔橄榄岩的组成,表明在太行山中段新生代时期仍存在古老的岩石圈地幔。对比研究发现,华北地区岩石圈减薄存在时空上的差异。  相似文献   

3.
 A large new database of major, trace elements and Sr-Nd isotopic ratios from 11 lava-field provinces in New South Wales and Queensland, eastern Australia allows detailed interpretation of the origin of these basaltic magmas. Isotopic signatures and trace element patterns identify an OIB-type (oceanic island basalt) source as a dominant component for most of these and some provinces appear to have additional significant components derived from the subcontinental lithospheric mantle (SCLM). The SCLM components have geochemical characteristics that overlap those observed in spinel lherzolite xenoliths (samples of shallow lithospheric mantle) from eastern Australia. These SCLM components show geochemical provinciality that indicates the occurrence of distinct geochemical lithospheric domains reflecting the timing and style of tectonic evolution of different regions. One component reflects modification by subduction-related processes during the late Paleozoic and Mesozoic, one records enrichment by fluids during old metasomatic events and another suggests a metasomatic event involving a distinctive amphibole and apatite-style enrichment. The composition and age distribution of volcanic lava-field provinces older than 10 Ma are consistent with a model involving a regional upwelling (elongated N–S along eastern Australia) of deep hot mantle related to marginal rifting and with OIB-type source geochemical characteristics. Thermal inhomogeneities within this plume swath resulted in small diapirs which may have undergone melt segregation at about 100 km and incorporated varying amounts of SCLM components there or from higher levels of the SCLM during ascent. Subsequent hot-spot generated central volcanoes overprinted this lava-field volcanism, tapped a similar OIB-type source component and truncated the thermal events. Accepted: 15 March 1995  相似文献   

4.
Data on the petro- and geochemical characteristics of mantle xenoliths in kimberlites, which sampled the mantle beneath Early Precambrian tectonic structures (Archean cratons: the basement of the Eastern Siberian Platform, Karelian, Kaapvaal, Wyoming, Western Dharvar; Early and Middle Proterozoic foldbelts: Western Olenek, Natal, and Halls Creek), and xenoliths in alkaline basalts, which sampled the mantle benath Late Proterozoic-Phanerozoic structures (foldbelts: Central Asian, Mozambique, southern tip of South America, and Central German) indicate the following: (1) The major and trace element and REE composition of the mantle is different beneath Early Precambrian structures and Late Proterozoic-Phanerozoic foldbelts and reflects the degree of partial melting of the primitive mantle and its depletion in magmaphile components beneath ancient structures compared to young ones. (2) The original composition of the mantle was different beneath the Early Precambrian and Late Proterozoic structures in terms of both major oxides and incompatible trace elements and REE and their ratios; the composition of the mantle beneath the Eastern Siberian Platform, Wyoming, and Karelian cratons is different in terms of Zr/Y, La/Sm, Ce/Sm, Gd/Yb, and Lu/Hf. (3) The degree of melting of the primitive mantle decreases with depth, as follows from the negative correlation between the MgO/SiO2 ratio and pressure (i.e., depth) and the positive correlation between the Al2O3/MgO ratio and pressure in the xenoliths. (4) The Y, Zr, Ti, Sm, Gd, and Yb conncentrations and the sum of HREE in the mantle decrease with increasing degree of melting; correspondingly, the material most strongly depleted in these incompatible trace elements and REE composes the upper levels of the lithospheric continental mantle.  相似文献   

5.
在无水"干"体系的四矿物相橄榄岩中,单斜辉石由于熔点低而通常记录着丰富的部分熔融作用和地幔交代作用信息。在详细岩相学特征和组成矿物主元素分析基础上,重点对内蒙古集宁玄武岩中橄榄岩包体的单斜辉石进行了激光原位微量元素研究。通过与新生代时华北具古老克拉通地幔特征(如鹤壁)和具新生岩石圈地幔特征(如山旺)的橄榄岩对比,讨论了新生代时集宁地区陆下岩石圈地幔性质及其形成和演化机制。集宁地区岩石圈地幔是相当于原始地幔经过较低程度的部分熔融抽取形成的,除个别样品的部分熔融程度5%外,多数样品为5%~10%。橄榄岩的平衡温度与橄榄石Mg#关系表明新生代时集宁地区的陆下岩石圈地幔是不均一的,无明显分层现象,表现为饱满与过渡型地幔的共存。这种主体饱满并兼有过渡型地幔的不均一现象,可能是软流圈物质对古老地幔进行不均匀侵蚀、改造和置换作用的结果。  相似文献   

6.
The variations in trace element abundances of a suite of alkali-olivine basalts from the Big Pine volcanic field, California, have been ‘inverted’ following the method of Hofmann and co-workers to obtain source concentration and distribution coefficient data. The high Mg-numbers and ne-normative mineralogy of these lavas allow a simple correction to be made for fractional crystallisation, and together with a limited range in 87Sr/86Sr (0.7056–0.7064), suggest derivation from a relatively homogeneous source region. Negative correlations between SiO2 and P2O5, and SiO2 and Rb in the calculated primary magmas imply that both major and trace elements vary in a coherent fashion as a function of the degree of partial melting. The Big Pine lavas are characterised by high ratios of large-ion lithophile to high-field strength elements (Ba/Nb>60), and the inverse procedure demonstrates that this reflects source concentrations, as opposed to a mineralogical control. The calculated mantle source is further characterised by generally high abundances of Sr, Ba, K, and Th relative to Nb and Ta which imply that incompatible element enrichment of the source occurred above a subduction zone. A model Sm/Nd age of 1.8 Ga for this enrichment coincides with the regional crustal formation age. Such features imply that both the major and trace element components of the Big Pine lavas are derived from within lithospheric mantle, perhaps mobilised by the high geothermal gradients which characterise the extensional environment of the Basin and Range Province. A comparison with other Cenozoic mafic lavas throughout the western United States suggests that a substantial proportion of the mantle lithosphere in this area has similar chemical characteristics to the source of the Big Pine lavas. If this is the case, then it implies that convergent margins represent an important tectonic environment for the formation of lithospheric mantle.  相似文献   

7.
张岗岚  刘勇胜  张拉 《岩石学报》2023,39(1):119-134

了解大陆地幔的不均一性对于理解地壳成分再循环、壳-幔相互作用等过程至关重要。本文通过对华北克拉通北缘汉诺坝地区来自不同地幔深度幔源岩石(玄武岩及橄榄岩和辉石岩包体)的研究进行综述,探讨了地幔在垂向上成分的不均一性特征。汉诺坝玄武岩的研究揭示了汉诺坝地区软流圈顶部存在再循环的碳酸盐化榴辉岩以及岩石圈底部具有富集的古老洋壳和沉积物成分。另外,玄武岩携带的橄榄岩和多类型辉石岩包体记录了不同来源(蚀变洋壳、沉积碳酸盐岩、碎屑沉积物、拆沉下地壳、软流圈)且不同成分(硅酸盐、碳酸盐)的熔/流体活动。富集地壳来源的熔/流体加入明显影响了汉诺坝地区陆下地幔成分的均质性,使得陆下地幔在微米至千米尺度存在明显的成分不均一特征。汉诺坝地区陆下地幔不均一性的认识为了解地壳物质再循环提供了绝佳的窗口。

  相似文献   

8.
大陆岩石圈地幔定年   总被引:4,自引:0,他引:4  
大陆岩石圈地幔是伴随地壳熔体抽取而形成的低密度地幔残留,是联系软流圈与地壳的重要纽带。虽然大陆岩石圈地幔一直是固体地球科学研究的重要内容,但对其形成时代的准确厘定则是当前研究的难点。传统方法是采用岩石圈地幔中橄榄岩主要元素的贫瘠程度来对岩石圈进行定年,即古老的岩石圈地幔Al2O3和CaO含量低,而MgO含量高(同时导致橄榄石高Fo值),而年轻岩石圈地幔的特征正好相反。显然,这种间接的方法不能给出确切的年龄信息。尽管Sr-Nd和锆石U-Pb等同位素方法也被用来进行地幔橄榄岩定年,但岩石圈地幔通常具有的较高温度使上述同位素体系不能保持封闭,因而给出的年龄大多与岩石圈地幔的形成时代无关。近几年发展起来的Re-Os同位素技术是目前进行岩石圈地幔定年的最理想工具,但也存在一系列需要研究的问题。文中对这一方法的基本原理、发展现状和存在的问题进行了全面的介绍。同时,根据目前获得的Os同位素资料,对中国东部岩石圈地幔的时代进行了讨论,并简要论述所获得的资料对岩石圈减薄研究的启示。  相似文献   

9.
Zircon megacrysts are found in alluvial deposits associated with Cenozoic basalts from Changle in Shandong Province, Mingxi in Fujian Province and Penglai in Hainan Province within the coastal area of eastern China. They are colourless, transparent to light brown–maroon, and some of them are up to 16 mm long. U–Pb ages of zircon megacrysts from Changle, Mingxi and Penglai are 19.2?±?0.7 Ma, 1.2?±?0.1 Ma and 4.1?±?0.2 Ma respectively, slightly older than the eruption ages of their corresponding host rocks (16.05–18.87 Ma, 0.9–2.2 Ma, 3 Ma). εHf(t) values of zircon megacrysts are 9.02?±?0.49, 6.83?±?0.47, 4.46?±?0.48 for Changle, Mingxi and Penglai, respectively, which indicates their mantle origin. We suggest that the zircon megacrysts originated from metasomatised lithospheric mantle and were later brought up quickly by the host basaltic magma. The euhedral forms, uniform internal structure and chemical homogeneity within a single grain suggest crystallization under stable conditions. Pronounced positive Ce anomalies and negligible Eu anomalies suggest oxidizing conditions and little or no fractional crystallization of plagioclase. The differences in Hf-isotope compositions among the zircon megacrysts from different localities are consistent with the Sr-Nd-Pb isotopic compositions of their respective host basalts. This indicates that the host basalts acquired their isotopic signatures from the lithospheric mantle from which the zircon megacrysts derived. These data document the lateral compositional heterogeneity in the upper mantle beneath eastern China. Like mantle xenoliths, zircon megacrysts also have the potential to fingerprint the composition and evolution of the subcontinental lithospheric mantle.  相似文献   

10.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

11.
Current models for the formation of natural diamond involve either oxidation of a methane-bearing fluid by reaction with oxidized mantle, or reduction of a carbonate-bearing fluid (or melt) by reaction with reduced mantle. Implicit in both models is the ability of the mantle with which the fluid equilibrates to act as an oxidizing or reducing agent, or more simply, to act as a source or sink of O2. If only redox reactions involving iron are operating, the ability of mantle peridotite to fulfill this role in diamond formation may not be sufficient for either model to be viable. Using the recent experimental recalibration of olivine–orthopyroxene–garnet oxybarometers of Stagno et al. (2013), we re-evaluated the global database of ~200 garnet peridotite samples for which the requisite Fe3+/Fe2+ data for garnet exist. Relative to the previous calibration of Gudmundsson and Wood (1995), the new calibration yields somewhat more oxidized values of Δlog fO2 (FMQ), with the divergence increasing from <0.5 units of log fO2 at ~3 GPa to as much as 1.5 units at 5–6.5 GPa. Globally, there is a range of ~4 log units fO2 for samples from the diamond stability field at any given pressure. Most samples are sufficiently reduced such that diamond, rather than carbonate, would be stable, and CHO fluids at these conditions would be H2O-rich (>60 mol%), with CH4 being the next most abundant species. To ascertain the capacity for mantle peridotite to act as a source or sink of O2, we developed a new model to calculate the fO2 for a peridotite at a given P, T, and Fe3+/Fe2+. The results from this model predict 50 ppm or less O2 is required to shift a depleted mantle peridotite the observed four log units of fO2. Coupled with the observed distribution of samples at values of fO2 intermediate between the most reduced (metal-saturated) and most oxidized (carbonate-saturated) possible values for diamond stability, these results demonstrate that peridotites are very poor sinks or sources of O2 for possible redox reactions to form diamond. A corollary of the poor redox buffering capacity of cratonic peridotites is that they can be employed as faithful indicators of the redox state of the last metasomatic fluid that passed through them. We propose that diamond formation from CHO fluids is a predictable consequence either of isobaric cooling or of combined cooling and decompression of the fluid as it migrates upward in the lithosphere. This establishes a petrological basis for the observed close connection between subcalcic garnet and diamond: based on high solidus temperatures of harzburgite and dunite effectively precluding dilution of CHO fluids through incipient melts, such highly depleted cratonic peridotites are the preferred locus of diamond formation. Due to a rapid increase in solidus temperature with increasing CH4 content of the fluid, diamond formation related to reduced CHO fluids may also occur in some cratonic lherzolites.  相似文献   

12.
Many objections have been raised as to the ability of subcontinental lithospheric mantle to produce voluminous amounts of basalt, because this upper part of the mantle is thought to be refractory, and the geotherm is rarely above the peridotite solidus at these depths under continents. However, in the Pacific Northwest of the USA during the Neogene, the subcontinental lithospehric mantle has been proposed as a key source for basalts erupted within the northern Basin and Range, and for the Columbia River flood basalts erupted on the Columbia Plateau. An alternative explanation to melting in the subcontinental lithospheric mantle, which equally well explains the chemical compositions thought to originate there, is that these magmas were contaminated by crust of varying ages. Calc-alkaline lavas, which occupy the Blue Mountains in the center of this region, hold clues to the latter process. Their elevated trace element ratios (e.g., Ba/Zr, K2O/P2O5), coupled with differentiation indicators such as Mg? [molar Mg/(Mg?+?Fe)], and Sr, Nd, and Pb isotopic compositions, can most reasonably be explained by crustal contamination. Appraisal of continental peridotite xenolith data indicates that high trace element ratios such as Ba/Zr in continental basalts cannot result from melting in the subcontinental lithospheric mantle. Instead, as with the calc-alkaline lavas, these high ratios in the tholeiites most likely indicate crustal contamination. Furthermore, the peridotite xenoliths do not have a relative depletion in Nb and Ta that is observed in most of the lavas within the region. Relatively minor volumes of tholeiites erupted in late Neogene times in the northern Basin and Range (Hi-Mg olivine tholeiites) and Columbia Plateau (Saddle Mountains basalts), are the only lavas which have trace element and isotopic compositions consistent with being derived from, or largely interacting with a subcontinental lithospheric mantle in the Pacific Northwest. In contrast to the prior studies, we suggest that the mantle sources for most of the basalts in this region were ultimately beneath the lithospheric mantle.  相似文献   

13.
14.
对产于莒南晚中生代玄武岩中的镁铁质麻粒岩和橄榄岩包体矿物进行了傅里叶变换红外光谱(FTIR)分析.结果显示,麻粒岩矿物和全岩中水含量分别为:单斜辉石300×10-6~1 180×10-6,斜方辉石80×10-6~169×10-6,斜长石717×10-6~1 239×10-6,全岩525×10-6~855×10-6;橄榄岩矿物和全岩中水含量分别为:单斜辉石466×10- 6~746×10-6,斜方辉石187×10-6~304×10-6,橄榄石6×10-6~15×10-6,全岩81×10-6~245×10-6.从单矿物看,麻粒岩和橄榄岩之间水含量的差距不是很明显,但麻粒岩的全岩水含量明显高于橄榄岩,表明大陆深部岩石圈的水含量在垂向上具有不均一性.  相似文献   

15.
鲁江姑  郑建平 《地质学报》2011,85(3):330-342
内容提要:在对吉林辉南新生代玄武岩中捕虏体橄榄岩详细的岩相学和矿物主量元素研究基础上,重点分析了单斜辉石激光原位微量元素,并讨论了辉南陆下岩石圈地幔的性质及其在华北克拉通破坏过程中的意义。橄榄石、单斜辉石和尖晶石的Mg#和Cr#均表明该区陆下岩石圈地幔主体是饱满的,同时也存在少量过渡和难熔型地幔。单斜辉石REE配分形式包括LREE亏损、倒U字型REE和LREE富集等不同类型。这些橄榄岩是地幔经历不同程度的部分熔融作用(低于10%)和复杂地幔交代作用的产物。交代介质主体是硅酸盐熔体,但个别样品有碳酸岩熔体交代的残留。橄榄石Mg#和平衡温度无相关性,说明辉南陆下岩石圈地幔不存在明显的分层而是交叉的。这些地幔特征和华北东部其他地区新生代的主体地幔性质相似,是熔-岩反应、侵蚀作用和上涌软流圈物质冷却转变置换的综合结果。  相似文献   

16.
闫峻  陈江峰  谢智  杨刚  喻钢  钱卉 《地球化学》2005,34(5):455-469
长江中下游地区繁昌火山盆地蝌蚪山晚白垩世玄武岩为硅饱和岩石, SiO2含量在 47.63%~ 50.02%之间,在 TAS图上位于碱性和亚碱性的分界线上,多数属于玄武岩,少数为粗面玄武岩. MgO含量较低( 3.72%~ 5.58%),但 Mg#值较高( 61~ 71).岩石富集大离子亲石元素 Ba、 Th、 U、 LREE和 Pb,亏损高场强元素 Nb、 Zr和 Ti,具富集的 Sr、 Nd和 Pb同位素组成.初始 87Sr/86Sr(t)比值介于 0.706 5~ 0.706 6之间,ε Nd(t)值介于-5.5~-7.3之间.在 87Sr/86Sr(t)-ε Nd(t)相关图上投在富集的第Ⅳ象限,并趋向于 EMⅡ地幔端员. 206Pb/204Pb(t)、 207Pb/204Pb(t)和 208Pb/204Pb(t)比值分别为 17.928~ 18.311、 15.426~ 15.621和 37.785~ 38.525,在 Pb同位素相关图上处在 DMM和 EMⅡ地幔端员之间.蝌蚪山玄武岩的地球化学特征表明其原始岩浆来源于岩石圈地幔,底侵到壳幔边界后曾有一段时间的滞留,并经历了一定程度的以橄榄石和斜方辉石为主的结晶分异,随后在上升过程中没有受到明显的地壳物质的混染.本地区晚中生代时期陆下岩石圈地幔具有同位素富集的性质,曾受到过古老俯冲事件中析出流体 /熔体的交代.与本地区新生代玄武岩地球化学性质的对比表明,从晚中生代至新生代,由于岩石圈拉张和软流圈的上涌,长江中下游地区发生了岩石圈的减薄,其过程和华北地块东部的岩石圈减薄事件基本一致.造成华北地块东部和华南地块东部的岩石圈减薄具有一致的动力学机制和背景,很可能是晚中生代时期古太平洋板块向亚洲大陆之下俯冲造成的弧后盆地的拉张减薄.  相似文献   

17.
Redox states of lithospheric and asthenospheric upper mantle   总被引:24,自引:7,他引:24  
The oxidation state of lithospheric upper mantle is heterogeneous on a scale of at least four log units. Oxygen fugacities ( ) relative to the FMQ buffer using the olivine-orthopyroxene-spinel equilibrium range from about FMQ-3 to FMQ+1. Isolated samples from cratonic Archaean lithosphere may plot as low as FMQ-5. In shallow Proterozoic and Phanerozoic lithosphere, the relative is predominantly controlled by sliding Fe3+-Fe2+ equilibria. Spinel peridotite xenoliths in continental basalts follow a trend of increasing with increasing refractoriness, to a relative well above graphite stability. This suggests that any relative reduction in lithospheric upper mantle that may occur as a result of stripping lithosphere of its basaltic component is overprinted by later metasomatism and relative oxidation. With increasing pressure and depth in lithosphere, elemental carbon becomes progressively refractory and carbon-bearing equilibria more important for control. The solubility of carbon in H2O-rich fluid (and presumably in H2O-rich small-degree melts) under the P,T conditions of Archaean lithosphere is about an order of magnitude lower than in shallow modern lithosphere, indicating that high-pressure metasomatism may take place under carbon-saturated conditions. The maximum in deep Archaen lithosphere must be constrained by equilibria such as EMOG/D. If the marked chemical depletion and the orthopyroxene-rich nature of Archaean lithospheric xenoliths is caused by carbonatite (as opposed to komatiite) melt segregation, as suggested here, then a realistic lower limit may be given by the H2O +C=CH4+O2 (C-H2O) equilibrium. Below C –H2O a fluid becomes CH4 rather than CO2-bearing and carbonatitic melt presumably unstable. The actual in deep Archaean lithosphere is then a function of the activities of CO2 and MgCO3. Basaltic melts are more oxidized than samples from lithospheric upper mantle. Mid-ocean ridge (MORB) and ocean-island basalts (OIB) range between FMQ-1 (N-MORB) and about FMQ +2 (OIB). The most oxidized basaltic melts are primitive island-arc basalts (IAB) that may fall above FMQ+3. If basalts are accurate probes of their mantle sources, then asthenospheric upper mantle is more oxidized than lithosphere. However, there is a wide range of processes that may alter melt relative to that of the mantle source. These include partial melting, melt segregation, shifts in Fe3+/Fe2+ melt ratios upon decompression, oxygen exchange with ambient mantle during ascent, and low-pressure volatile degassing. Degassing is not very effective in causing large-scale and uniform shifts, while the elimination of buffering equilibria during partial melting is. Upwelling graphite-bearing asthenosphere will decompress along -pressure paths approximately parallel to the graphite saturation surface, involving reduction relative to FMQ. The relative will be constrained to below the CCO equilibrium and will be a function of . Upwelling asthenosphere whose graphite content has been exhausted by partial melting, or melts that have segregated and chemically decoupled from a graphite-bearing residuum will decompress along -decompression paths controlled by continuous Fe3+-Fe2+ solid-melt equilibria. These equilibria will involve increases in relative to the graphite saturation surface and relative to FMQ. Melts that finally segregate from that source and erupt on the earth's surface may then be significantly more oxidized than their mantle sources at depth prior to partial melting. The extent of melt oxidation relative to the mantle source may be directly proportional to the depth of graphite exhaustion in the mantle source.  相似文献   

18.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   

19.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

20.
华北克拉通东部岩石圈地幔性质在中—新生代时期发生了重大转变,但细节还不清楚。本文对辽东半岛早白垩世(克拉通破坏峰期)小岭组玄武岩和第四纪(克拉通破坏后)宽甸玄武岩中橄榄石斑晶/捕虏晶进行了主量元素和氧同位素组成研究。早白垩世小岭组玄武岩斑晶橄榄石Fo为79~88,CaO>0.1%,具有高Ni/Mg(0.4~1.2)、低Mn/Fe(1.3~1.6)和低Ca/Fe比值(0.2~1.5)的特征,指示岩浆源区是辉石岩和橄榄岩混合的岩石圈地幔;高于正常地幔橄榄石的δ18O(4.77‰~5.96‰,平均值5.4‰)显示低温热液蚀变洋壳熔体/流体组分对地幔源区的影响。第四纪宽甸玄武岩捕虏晶橄榄石Fo值为88~92(平均值90),具有高NiO(0.3%~0.4%)和低CaO(<0.1%)、MnO(0.1%~0.2%)含量,显示主体饱满、与少量过渡型和难熔型并存的地幔组成特征;其δ18O(4.58‰~5.38‰,平均值5.3‰)与正常地幔值接近。结合华北其他地区地幔橄榄石氧同位素数据,发现早白垩世破坏峰期有较多俯冲洋壳来源的熔/流体交代岩石圈地幔,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号