首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metasedimentary rocks of the area around Mangpu constitute a portion of the hinge zone of the northern limb of the major synform of Lower Darjeeling Himalaya. The rocks display evidences of multiple deformation and at least three major phases of deformation have been recognized. The time relations between the phases of deformation (D1, D2, D3) and metamorphic crystallization reveal a single major prograde metamorphic event that initiated with the D1 deformation and finally outlasted it. The earlier phase of this metamorphism is essentially regional syn-tectonic lowgrade (greenschist facies) which may be designated (M1, early). This was followed by regional static metamorphism (M1, late) in the post-tectonic phase between D1 and D2 deformations (upper green schist and amphibolite facies). This M1 metamorphism is superposed by later retrogressive metamorphism (M2) during the D2 and D3 deformations (lower greenschist facies). Within the study area four isograds have been delineated by the first appearance of index minerals in the pelitic schists and gneiss which display Barrovian type of metamorphism.  相似文献   

2.
The mineralogy of slightly metamorphosed manganese ore at the South Faizulino hydrothermalsedimentary deposit in the southern Urals has been studied; 32 minerals were identified. Quartz, hausmannite, rhodochrosite, tephroite, ribbeite, pyroxmangite, and caryopilite are major minerals; calcite, kutnahorite, alleghanyite, spessartine, rhodonite, clinochlore, and parsettensite are second in abundance. This mineralic composition was formed in the process of gradual burial of ore beneath the sequence of Middle Devonian-Lower Carboniferous rocks. The highest parameters of metamorphism are T ≈ 250°C and P ≈ 2.5 kbar. The relationships between minerals and their assemblages made it possible to reconstruct the succession of ore transformation with gradually increasing temperature and pressure. Manganese accumulated in the initial sediments as oxides and a gel-like Mn-Si phase. Rhodochrosite and neotocite were formed at the diagenetic stage. In the course of a further increase in temperature and pressure, neotocite was replaced with caryopilite; ribbeite, tephroite, pyroxmangite, and other silicates crystallized afterwards. In addition to the PT parameters, the formation of various metamorphic mineral assemblages was controlled by the Mn/(Mn + Si) ratio in ore and X CO2 in pore solution. The latter parameter was determined by the occurrence of organic matter in the ore-bearing rocks. Ore veinlets as products of local hydrothermal redistribution of Mn, Si, and CO2 were formed during tectonic deformations in the Middle Carboniferous and Permian.  相似文献   

3.
Manganese oxides form typically in natural aqueous environments via Mn(II) oxidation catalyzed by microorganisms, primarily bacteria, but little is known about the structure of the incipient solid-phase products. The Mn oxide produced by a Pseudomonas species representative of soils and freshwaters was characterized as to composition, average Mn oxidation number, and N2 specific surface area. Electron microscopy, X-ray diffraction, and X-ray absorption near edge structure spectroscopy were applied to complement the physicochemical data with morphological and structural information. A series of synthetic Mn oxides also was analyzed by the same methods to gain better comparative understanding of the structure of the biogenic oxide. The latter was found to be a poorly crystalline layer type Mn(IV) oxide with hexagonal symmetry, significant negative structural charge arising from cation vacancies, and a relatively small number of randomly stacked octahedral sheets per particle. Its properties were comparable to those of δ-MnO2 (vernadite) and a poorly crystalline hexagonal birnessite (“acid birnessite”) synthesized by reduction of permanganate with HCl, but they were very different from those of crystalline triclinic birnessite. Overall, the structure and composition of the Mn oxide produced by P. putida were similar to what has been reported for other freshly precipitated Mn oxides in natural weathering environments, yielding further support to the predominance of biological oxidation as the pathway for Mn oxide formation. Despite variations in the degree of sheet stacking and Mn(III) content, all poorly crystalline oxides studied showed hexagonal symmetry. Thus, there is a need to distinguish layer type Mn oxides with structures similar to those of natural birnessites from the synthetic triclinic variety. We propose designating the unit cell symmetry as an addition to the current nomenclature for these minerals.  相似文献   

4.
During regional prograde metamorphism, H2O generated by ongoing dehydration reactions is likely to be continuously lost from a rock by compaction. Classical melting experiments cannot easily simulate this phenomenon, because ideally, all run products are conserved within the experimental charge, although significant equilibration and H2O generation may occur during heating. Phase equilibria modelling is used to consider the effect of subsolidus water loss (SWL) on subsequent melting relationships of felsic lithologies (including metapelite, metagreywacke and metatonalite) in the suprasolidus. SWL drives the bulk composition towards the minimum saturation point on the boundary of the wet‐melting field and results in significantly reduced subsequent melt generation when compared to melting experiments involving conservation of subsolidus H2O. This effect is most significant at PT conditions just above the solidus. For initially hydrated rocks, the reduction in melt production causes rheologically critical thresholds (e.g. melt connectivity threshold, melt escape threshold and the solid‐to‐liquid transition) to be intersected at temperatures generally more than 100 °C, higher than predicted by idealized experimental melting curves.  相似文献   

5.
The products of shock metamorphism in the Jänisjärvi astrobleme in Karelia, Russia, are compared with the results of experiments in which spherical converging shock waves affected a spherical rock sample. The sample was loaded by a broad spectrum of shock pressures, which increased from ~20 GPa at the periphery of the rock sphere to > 200 GPa at its center. Experiments with rocks metamorphosed under the effect of spherical converging shock waves imitate collisions of cosmic bodies with the Earth’s surface, when transformations in rocks and minerals are induced by a single impact event. The shock-thermal decomposition of mafic minerals occurs in the same succession in nature and the experiments, with some differences between natural and experimentally produced shock-thermal aggregates likely accounted for by the smaller sizes of the experimental impact rock sample and, correspondingly, its more rapid quenching. Our shock experiments were the first to synthesize ringwoodite that was rich in Al2O3 and should be referred to as aluminous ringwoodite. The mineral was produced not via the martensite transition of olivine but by means of biotite replacement coupled with the migration of elements. The transformations of minerals by shock waves (amorphization and shock-thermal decomposition) were determined to be controlled mainly by the crystal structures of these minerals. The experimental products provide evidence of the migration of chemical elements within the crystal structure. The structural setting of ions in a mineral determines the onset of element migrations and the intensity of this process.  相似文献   

6.
We present results from a long term geochemical cycling model, with a focus on the sensitivity of atmospheric carbon dioxide, oxygen, and the major element composition of seawater to seafloor spreading rates. This model incorporates rock weathering, basalt–seawater exchange reactions, and the formation and destruction of chemical sediments and organic matter. Hydrothermal reactions between seafloor and seawater involving calcium, magnesium, sodium, potassium, sulfate and carbon are the high temperature counterparts to low temperature redox, weathering, precipitation and diagenetic reactions. A major source of uncertainty is the extent to which these exchange fluxes are controlled by seafloor spreading rate. In addition, the return fluxes of these components to the atmospheric and primary silicate reservoirs reflect not only the overall rates of subduction and metamorphism, but the distribution of the overlying sedimentary burden and authigenic minerals formed during basalt alteration as well. In particular, we show how the stoichiometry of exchange fluxes (Mg/Ca and SO4/Ca) may buffer atmospheric CO2 and O2 concentrations.  相似文献   

7.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

8.
《International Geology Review》2012,54(10):1297-1307
Results of a comparative study of magnetic properties and the petrochemical composition of noncontemporaneous effusives may be applied in differentiating their primary and diagenetic varieties, epicontinental (platform) and geosynclinal formations, and ore-contact alteration of basic effusives, associated with propylitization. In addition, it becomes clear that the mineral and chemical composition of mobile belt effusives, especially pre-Cenozoic, depends less on the overall chemical composition of their original magma than on elements added and removed from them during the nascent metamorphism. This point must be taken into consideration in determining the specific material composition of magmas involved, as well as of their evolution within orogenic zones. In the instance of the so-called "fresh" rocks of mobile belts, their content of magnesium and iron oxides, and alkalis, with all their ratios, are not the geochemical correlatives of their parent magmas. On the other hand, some of such oxides and their ratios, such as MgO and Fe2O3/FeO, may constitute, along with magnetic characteristics, objective indicators of nascent metamorphism in basic effusives — and of their age, as long as the two are usually proportionate.--Author's summary.  相似文献   

9.
分布于北京密云水库附近的密云群变质岩是太古代遭受多期变质作用的片庥杂岩,研究它的矿物演化将有利于阐明变质作用过程及早期地壳发展的特点。密云群主要由超镁铁质变质岩类(Si=100—200,C>15,K<0.2)、镁铁质变质岩  相似文献   

10.
陨石矿物种类的研究进展和矿物表   总被引:3,自引:0,他引:3  
早在约 2 0 0年前 ,科学家就在铁陨石中鉴定出了两种陨石矿物——陨硫铁和金属铁—镍。到了 1 9世纪 80年代 ,陨石矿物的数量增加到 1 6种。 2 0世纪 60年代以来 ,随着显微镜的广泛应用 ,以及许多新的测试技术如 X射线衍射、电子探针、扫描电镜和透射电镜的应用 ,使更多的陨石矿物能被发现。1 967年 ( Mason列出 60种陨石矿物 )至 1 987年( Yudin和 Kolomenskiy列出了 2 0 0种陨石矿物 )的2 0年间陨石矿物种数增加到原来的 3倍多。1 991年Ulyanov完成了陨石、星际尘粒和玻璃陨石共 350种矿物的列表。Rubin〔1〕在前人工作的基础上 ,去掉…  相似文献   

11.
对辽北太古宙层状变质岩系中石榴石、黑云母的成分分析发现,其中存在明显的振荡型矿物环带。对其形成机理的研究表明,这是矿物在结晶过程中由于偏离理想状态而形成的一种非平衡态自组织现象,即耗散结构。矿物内部成分的振荡性并不是由于外界条件的周期变化所造成的,而是体系内部固有属性的反映。这种认识对研究变质作用的动力学过程具有重要的借鉴意义,文中还就这种振荡性矿物环带在变质作用研究中的意义作了进一步的阐述。  相似文献   

12.
The primary minerals of a partly serpentinized Alpine type ultrabasic mass, lying in a zone of low Alpine metamorphism, were analysed with an electron microprobe. The distribution coefficients of Mg and Fe in coexisting orthopyroxenes, clinopyroxenes and olivines indicates an equilibrium temperature of around 1400°C. The Ca/Ca+Mg ratios in the clinopyroxenes indicate temperatures between 800° and 1000°C. This discrepancy in temperature estimations can partly be explained by the high Al2O3-contents of the clinopyroxenes, since a good correlation between Al2O3-contents and Ca/Ca+Mg ratio was found. The Na2O-content of the clinopyroxenes decreases in the successive pyroxenites that differentiated from the main lherzolite. From the mineralogical composition of the different rock types and the chemical compositions of the minerals it is concluded that the Totalp peridotite originated in the Upper Mantle.In the Malenco serpentinite, the clinopyroxenes formed during the rather strong Alpine metamorphism are much poorer in Al2O3 and Na2O than the primary clinopyroxenes. On the other hand, the olivines, grown postdeformationally during the Alpine metamorphism, are not much different in composition to the primary olivines.  相似文献   

13.
The distribution of uranium and boron in polymetamorphosed, granulite facies schists and gneisses has been studied using particle track methods. The concentration and distribution of these elements when examined in relation to mineralogy and microstructure provide an insight into: (1) the behaviour of U and B in metamorphism, (2) the activity of a fluid phase in the metamorphic processes and (3) the nature of chemical processes during schistosity development. A low concentration of primary U occurs in micro-inclusions of apatite and zircon (many are metamict) in the granulite facies M1 assemblage. This assemblage which lacks B, except for zoned sillimanite, has undergone a localized retrograde metamorphism RM1 characterised by hydrous alteration products containing abundant U and B. The RM1 metamorphism is attributed to fluids generated during granulite facies dehydration reactions. A schistosity S2 defined by M2 fibrolite aggregates overprints the M1 events. It is associated with (1) intragranular U concentrated in M2 apatite and titanium bearing minerals and (2) abundant intergranular U within the fibrolite aggregates. High B contents also occur with the fibrolite. The S2 schistosity appears to develop in a metamorphic environment containing a fluid enriched in U and B.  相似文献   

14.
南极月球陨石MIL05035矿物学、岩石学及演化历史   总被引:1,自引:0,他引:1  
月球陨石MIL05035岩石类型上属于普通辉石低钛玄武岩,粗粒辉长结构,无角砾化。主要矿物为辉石(60.2%)、斜长石(27.3%)和橄榄石(6.05%),次要矿物为石英(4.36%)、钛铁矿(1.25%)和陨硫铁(0.84%),含极少量富Ti、Fe尖晶石和磷灰石,广泛发育由钙铁辉石+铁橄榄石+石英组成的后成合晶三相集合体。辉石颗粒具有明显的化学成分不均匀性和出溶片晶,核部相对贫铁钙富镁(Fs30.2-60.8Wo14.2-35.0),边部富铁钙贫镁(Fs47.5-64.9Wo22.8-44.3)。熔长石化斜长石具有微弱的成分环带,边部相对富碱金属元素(Ab9.3-12.3,Or0.31-1.03),核部则相反(Ab7.6-10.6,Or0.12-0.36),含有未熔长石化的残留斜长石。橄榄石具有粗晶橄榄石(Fa95.5-96.6)和后成合晶中细粒橄榄石(Fa88.9-93.5)两种产状。石英具有脉状、团块状和蠕虫状等产状:脉状石英大部分转变为二氧化硅玻璃,核部石英具有较宽的拉曼谱特征峰(448~502cm-1),证明其经历了冲击变质与退变质作用;团块状石英分布于粗粒橄榄石颗粒间或橄榄石与斜长石和辉石接触边界上,与斜长石构成充填结构;蠕虫状石英分布于细粒后成合晶中。粗粒辉石边部铁辉石和后成合晶中辉石成分的继承性、结构上的延续性、光学特征上的冲击暗化现象、与冲击熔脉结构上的相关性和后成合晶中发育与粗粒辉石方向几乎一致的解理等方面的证据,认为后成合晶可能由于铁辉石在冲击压力释放与温度降低后的退变质作用下分解形成。根据岩石矿物结构观察、成分分析和MELTS模拟表明该陨石母岩的岩浆演化过程可能为:母岩浆在温度降低后首先产生极少量钛铁尖晶石、其次是普通辉石和钙长石先后结晶;随着温度下降,贫钙铁普通辉石、铁钙铁辉石和铁普通辉石等在普通辉石边部大量结晶,钙长石边部分异结晶少量培长石或拉长石;随着温度继续下降,早期结晶的普通辉石析出易变辉石等出溶片晶,橄榄石在辉石和斜长石边部结晶;其后,钛铁矿和陨硫铁析出,石英沿橄榄石和钙长石等先结晶矿物裂隙充填。出露月表后强烈的冲击变质作用使斜长石几乎全部转变为熔长石、石英大部分转变为二氧化硅玻璃,并具有一系列面状变形,冲击熔脉发育,冲击变质程度至少为S5。本研究为月球的岩浆演化和冲击变质过程提供了重要证据。  相似文献   

15.
本文通过夕线石的结构、成分及产出状态,系统讨论和总结了其变质形成过程.含夕线石的变质岩原岩未必对应泥质岩,富夕线石岩石成分上更不能与任何的泥质岩成分对应.原岩本身富铝如多数泥质岩是形成夕线石非常有利的成分条件,但是,即使有合适的温压条件,也未必能够形成夕线石,组分的差异性迁移才是夕线石形成的必要条件.夕线石的形成与变形...  相似文献   

16.
Clasts of shocked garnet-sillimanite gneisses comprise a minor fraction of the allochthonous breccia at the Haughton impact structure. Refractive indices of the diaplectic and fused components of the gneisses, and reduced specific gravity indicate shock pressures from 35 to 55±5 GPa and effective post-shock temperatures from 500° to 1,000° C in a suite of selected samples.Sillimanites remain birefringent but display several effects of shock metamorphism. Shock-produced planar features and planar fractures are highly developed; optic axial angle (2V y ) increases from near normal (26°) to over 80° within a sample; there is a reduction in optical relief and a development of a pale brown colouring which generally deepens in shade as shock level increases. There is no unambiguous evidence, optically or from X-ray investigation, of a high-pressure Al2SiO5 polymorph or breakdown to mullite and silica. The highly shocked sillimanites have anomalous K2O contents from 0.11% to 0.92%. Potassium appears to substitute for aluminum and, to a lesser degree, for iron while retaining sillimanite stoichiometry, and the amount of substitution generally reflects increased shock level. The source of the contributed potassium is the coexisting shock-fused feldspar glass. The glass of each sample is derived primarily from melted alkali feldspar with a minor and varied admixture from the breakdown of mafic minerals. The glasses are depleted in K2O, although Na2O is unaffected, and the extent of depletion can be correlated with the increased K2O content of the associated sillimanite. The incorporation of potassium in shocked sillimanites is a function of both degree of shock deformation and availability of potassium from other coexisting shocked phases. It is speculated that the brown colouration is a function of ferrous iron content and may reflect post-crater thermal history rather than shock level.Contribution from the Earth Physics Branch No. 951  相似文献   

17.
For two decades, the nature of Fe‐rich, oxygen‐bearing, Ru–Os compounds found in the supergene environment has been debated. Ru–Os–Fe‐oxides and nano‐intergrowths of ruthenium with magnetite have been proposed. We applied FE‐SEM, EMPA, μ‐Raman spectroscopy and synchrotron tts‐μXRD to Ru–Os–Fe compounds recovered from Ni‐laterites from the Dominican Republic. The results demonstrate that a significant portion of Fe exists in a common structure with the Ru–Os alloy, that is, ruthenian hexaferrum. This mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe‐oxide(s). Our data suggest that supergene ruthenian hexaferrum with a (Ru0.4(Os,Ir)0.1Fe0.5)?1.0 stoichiometry represents the most advanced weathering product of primary laurite within Ni‐laterites from the Dominican Republic.  相似文献   

18.
X-ray diffraction (XRD) studies on the radioactive ore samples from various parts of Rajasthan and Haryana have revealed the presence of several uranium and other atomic mineral occurrences in the albitite belt of western India. The primary uranium minerals (PUMs) are uraninite and brannerite, whereas, the secondary uranium minerals (SUMs) show considerable speciations: phosphate, silicate, hydrous oxide hydrate, and vanadate. Multiple oxides (MOs) are davidite, fergusonite, aeschynite-(Y), microlite, samarskite, euxenite, betafite, and columbite-tantalite. The thorium minerals are huttonite, thorite, uranoan-thorite, thorianite, thorutite, and brabantite. The yttrium and REE-bearing minerals are xenotime, britholite, allanite, chevkinite, tritomite, and monazite. It is noted that the measured unit cell dimension (a0) of the investigated uraninites ranges from 5.4110 Å to 5.4646 Å. The highest unit cell dimension (5.4646 Å) represents a composition (or oxidation grade) of UO2.05, whereas, the lowest one (5.4110 Å) corresponds to a composition of UO2.54. Furthermore, it is also apparent that, with increase in oxidation grade, there is a concomitant decrease in unit cell dimension. As most of the values of ao of uraninites from the albitite belt are high (> 5.45 Å), it may be inferred that the overall temperature of formation of uraninites of the albitite belt was higher (ca. 400°C). However, the low values of a0 in certain localities could be due to the prevalence of relatively low and fluctuating temperature regimes locally (ca. 400°–100° C). Numerous occurrences of refractory, multiple oxides, and REE minerals, in association with uranium mineralisation, also support a high-temperature origin for the investigated uraninites. Binary data plots of unit cell dimension (a0) versus oxidation grade/composition (UO2+x) of uraninites (n = 36) suggest that the gross uranium mineralisation in the albitite belt of western India is mainly linked to regional metamorphism, anatexis, granitic intrusion, metasomatism, and contact metamorphosed granite-pegmatite aureoles and granite-related vein type with hydrothermal overprints, including redistribution of intrinsic sedimentary uranium and its concentration along suitable structural locales. These interpretations are consistent with the known gross geologic features of the albitite belt. Furthermore, the presence of marialite (calcian) in many places in the albitite belt also supports such a contention, as this mineral is known to be restricted to metamorphic and metasomatic environments. The speciation of secondary uranium minerals could be due to the higher oxidation of U4+ to U6+ in surface to near-surface conditions and its (U6+) remobilisation as uranyl ions. The combination of moving uranyl ions with available cations and anions en route caused re-precipitation of U as diversified assemblages of low-temperature uranyl minerals under suitable physicochemical conditions.  相似文献   

19.
Cr-rich magnesiochloritoid in the eclogitized ophiolites of the Monviso massif occurs in the least differentiated rocks of the gabbroic sequence (troctolites to melatroctolites). Chloritoid ( X Mg=0.63–0.85; Cr≤0.55, atoms) co-exists with omphacite, talc and garnet. Minor, syn-eclogitic minerals are chromite, rutile and sometimes magnesite and Cr–Ti oxides.
Coronitic textures, indicative of a static recrystallization, characterize the analysed samples. Layers of variable mineral composition develop among igneous plagioclase, olivine, clinopyroxene and spinel. The minerals in the coronitic layers display sharp compositional zonings. The igneous minerals are commonly not preserved; their presence in the original assemblage is inferred from the mineralogical composition of the pseudomorphs.
Syn-eclogitic volatile components are indicated by the development of OH-bearing minerals (e.g. chloritoid & talc) and carbonates (e.g. magnesite), and supported by the presence of coarse-grained and fibrous mineral growths. The complex pseudomorphic replacements of igneous minerals suggest that these rocks changed their mineralogical composition prior to the eclogite facies recrystallization, most likely during ocean-floor metamorphism. It is suggested that syn-eclogitic fluids formed by breakdown reactions of pre-eclogitic volatile-bearing minerals.
Geothermobarometry indicates that the investigated rocks recrystallized at a depth corresponding to 2.4  GPa and temperatures of 620±50  °C. The attainment of high-pressure conditions is supported by the presence of magnesiochloritoid, magnesite and garnet with high pyrope content (up to 58  mol%). P–T  estimates point to a very low thermal gradient (about 9  °C km−1), comparable to that deduced in the adjacent Dora-Maira ultra-high pressure unit.  相似文献   

20.
Isotopic ratios of Pb in sulfide minerals (primarily pyrrhotite, chalcopyrite, and pentlandite) from a suite of samples from the platiniferous J-M Reef of the Stillwater Complex were measured to elucidate the temporal and genetic relationship between sulfides and host silicate minerals. Results indicate that sulfides and coexisting plagioclases are generally not in isotopic equilibrium, that both sulfides and feldspars record highly radiogenic initial ratios at 2.7 Ga, and that a component of “post-emplacement” radiogenic Pb has mixed with common Pb in the sulfides. A model involving introduction of radiogenic Pb carried by fluids derived from sources external to the complex is favored. Analyses of the lead isotopic composition of sulfides in veins which cut the complex indicate that a significant fraction of the radiogenic lead which was added to the sulfides was externally derived during an extensive hydrothermal episode, associated with Proterozoic regional metamorphism around 1.7 Ga. The possibility that some fractions of the radiogenic Pb may have been derived from primary minerals altered during the low-grade metamorphism cannot be discounted. The amount of radiogenic lead added is variable and in some cases negligible. There is a good correlation between the lead isotope composition and the nature of the secondary mineral assemblage. Sulfides and plagioclases in samples that show little or no alteration of the primary minerals are generally in isotopic equilibrium and preserve isotope ratios consistent with magmatic crystallization at 2.7 Ga. Samples with the most radiogenic sulfides contain abundant secondary minerals (serpentine, talc, actinolite, chlorite and zoisite) associated with greenschist facies metamorphism. Some of the radiogenic Pb in the sulfides can be removed by progressive stepwise leaching. However, in most samples recrystallization of sulfides during metamorphism has mixed common Pb and radiogenic Pb throughout the crystal structure such that, in these samples, stepwise leaching does not recover initial Pb isotopic ratios. Plagioclases are much more resistant to low temperature recrystallization and in almost all cases, stepwise leaching reveals the initial lead isotopic composition. The reactivity of sulfides over a wide temperature range enhances their utility in understanding not only the processes involved in their formation at the time of magmatic emplacement but also postmagmatic processes which were important in the redistribution and enrichment of platinum group elements (PGE) within the ore zone. Received: 30 December 1998 / Accepted: 16 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号