首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase state of hydrocarbon accumulations was predicted using recent drilling data for three oil and gas complexes of the northern regions of the West Siberian petroliferous basin: Lower and Middle Jurassic, Upper Jurassic, and Berriasian-lower Valanginian (Achimov member); these results were compiled in simplified maps presented in the paper. In order to develop a plausible model and distinguish the zones of hydrocarbon accumulation of various phase states, we analyzed and systematized the existing concepts on the distribution of oil, oil-gas condensate, and gas condensate pools in the Mesozoic sequences of this region, types of organic matter in rocks, and stages of catagenetic alterations. Based on the data of the Tyumen SG-6 superdeep well, the oil-generating capacity of source deposits was assessed. Three zones differing in the phase state of hydrocarbons, oil, gas condensate-oil (transitional), and gas condensate, were distinguished in the map of the distribution of hydrocarbon accumulations in the Early-Middle Jurassic petroliferous complex of northwestern Siberia. Only two zones of hydrocarbon accumulations, oil and transitional, were detected in the Late Jurassic complex of the Nadym-Taz and Ust’-Yenisei regions. The same zones but within different boundaries were distinguished in the Achimov sequence. In contrast to the Jurassic beds, the zone of occurrence of oil accumulations in the Achimov member occupies a larger area and extends further north. In terms of density, the oils of the Achimov deposits were subdivided into three types: ultralight, light, and medium. The zones of their occurrence are shown in the map. Original Russian Text ? S.A. Punanova, T.L. Vinogradova, 2006, published in Geokhimiya, 2006, No. 9, pp. 983–995.  相似文献   

2.
The study of the composition and depositional environments of sediments from the Mar’yanovo Formation (Upper Jurassic-Lower Cretaceous Bazhenov and Georgiev horizons) recovered by boreholes Vostok-1 and Vostok-3 in the southeastern part of the West Siberian Sea Basin revealed the following fact: in the latter hole located closer to the basin boundaries as compared with the former one, they are characterized by lower organic carbon and pyrite contents, indicating reduced salinity of the basin and higher oxidation degree of sediments. The same trend is derived from comparison of rocks from the Mar’yanovo Formation in both holes with the over- and underlying strata. In Borehole Vostok-4, the closet one to the former shoreline of the basin, the Mar’yanovo Formation is indistinguishable. Intense chemical weathering of rocks in provenances during their deposition noted by Kontorovich et al. (1971) is considered a most important factor responsible for its composition and formation conditions. Elevated influx of dissolved weathering products into the sea basin intensified its biogenic activity and stimulated the accumulation of high organic matter concentrations. This inference is valid for all Upper Jurassic-Lower Cretaceous organic carbon-rich sediments that are synchronous to the Mar’yanovo Formation and developed over a spacious area of the West Siberian basin.  相似文献   

3.
The results of palynomorph biofacies analysis in the Upper Cretaceous deposits of the Ust-Yenisei region are presented. The established facies confinement and indicative features of separate palynomorph groups are used, along with identified dinocyst morphotypes and taxa, in paleogeographic reconstructions. Seven palynomorph associations characterizing continental, coastal-marine, shallow-and deep-water facies are distinguished based on quantitative proportions between morphological groupings and individual taxa. As boundaries between distinguishable biostratigraphic and facies subdivisions do not coincide, dinocysts were likely insignificantly dependent in distribution on facies in the West Siberian epicontinental basin at least. On the other hand, distribution trends of particular dinocyst morphotypes and other microphytofossils are correlative with transgressive-regressive cycles and can be used for reconstruction of paleoenvironments.  相似文献   

4.
The Ust’-Belaya mafic-ultramafic massif is assigned to the Western Koryak fold belt and largely composed of residual spinel peridotites, layered spinel and plagioclase peridotites, and gabbros. These rocks are crosscut by occasional plagiogranite and diorite veins and exhibit locally a close spatial association with basalts and carbonate-sedimentary deposits of Late Devonian and Early Carboniferous age. Based on this evidence, the massif was ascribed to the pre-Late Devonian ophiolite association. Our study presents new U-Pb SHPIMP II zircon ages and petrographic and mineralogical data on samples of the layered amphibole gabbro and vein diorite from the Ust’-Belaya massif. The approximate concordant U-Pb age corresponding to a timing of of amphibole gabbro crystallization is 799 ± 15 Ma, and the concordant U-Pb age reflecting a timing of of vein diorite crystallization is 575 ± 10 Ma. These ages coupled with geological studies of the massif, petrological and mineralogical investigations of the dated samples, as well as literature data on the petrology of peridotites and the age of formed plagiogranites suggest that the peridotites and layered gabbros of the Ust’-Belaya massif were formed by the Late Riphean, whereas the vein diorite and plagiogranite were resulted from a later (Vendian-Cambrian) magmatic stage. The peridotites and gabbros of the massif display no genetic relationship with spatially associated basalts and sedimentary rocks and, thus, they cannot be considered as members the pre-Late Devonian ophiolitic association. The results of this study will inevitably lead to a significant revision of geological and geodynamic interpretations of the Ust’-Belaya mafic-ultramafic massif. However, uneven study of the Precambrian complexes of the Koryak and Chukchi areas, their evolution in different structures of the region cannot yet be described by a single geodynamic scenario.  相似文献   

5.
New paleontological finds in sediments of the Upper Vendian Nemakit-Dadynian Stage from different areas of the southern Siberian Platforms (Yenisei Range, Sayany region, central areas, Patom Highland) are discussed. The base of the Lower Cambrian Tommotian Stage (∼540 Ma) is established at the first appearance level of characteristic small-shelled fossils in the western part of the Patom Highland. This boundary coincides with the episode of a brief sea-level fall and enhanced terrigenous sedimentation in the basin with dominant carbonate sediment deposition. The base of the Purella antiqua Zone (544 Ma), which is registered by paleontological data in the Yenisei Range sections, is marked by the replacement of terrigenous sedimentation by the carbonate one. In the northwestern Yenisei Range, this boundary coincides, in addition, with a major hiatus and subsequent paleobasin extension. The base of the Nemakit-Daldynian Stage (base of the Anabarites trisulcatus Zone, ∼550 Ma) in most sections corresponds to the onset of sea transgression. In addition to small-shelled remains, sediments of this zone contain characteristic ichnofossils and Vendotaenia flora. It is shown that defined boundaries are traceable through the entire southern part of the Siberian Platform. This makes them useful for wider stratigraphic interpretations.  相似文献   

6.
The West Siberian Basin (WSB) records a detailed history of Permo-Triassic rifting, extension and volcanism, followed by Mesozoic and Cenozoic sedimentation in a thermally subsiding basin. Sedimentary deposits of Permian age are absent from much of the basin, suggesting that large areas of the nascent basin were elevated and exposed at that time. Industrial seismic and well log data from the basin have enabled extension and subsidence modelling of parts of the basin. Crustal extension (β) factors are calculated to be in excess of 1.6 in the northern part of the basin across the deep Urengoy graben. 1-D backstripping of the Triassic to Cenozoic sedimentary sequences in this region indicates a period of delayed subsidence during the early Mesozoic. The combination of elevation, rifting and volcanism is consistent with sublithospheric support, such as a hot mantle plume.

This interpretation accords with the geochemical data for basalts from the Siberian Traps and the West Siberian Basin, which are considered to be part of the same large igneous province. Whilst early suites from Noril'sk indicate moderate pressures of melting (mostly within the garnet stability field), later suites (and those from the West Siberian Basin) indicate shallow average depths of melting. The main region of magma production was therefore beneath the relatively thin (ca. 50–100 km) lithosphere of the basin, and not the craton on which the present-day exposure of the Traps occurs. The indicated uplift, widespread occurrence of basalts, and short duration of the volcanic province as a whole are entirely consistent with published models involving a mantle plume. The main argument against the plume model, namely lack of any associated uplift, appears to be untenable.  相似文献   


7.
The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.  相似文献   

8.
Based on the high-resolution body wave tomographic image and relevant geophysical data, we calculated the form and the vertical and tangential velocities of mantle flow. We obtained the pattern of mantle convection for East Asia and the West Pacific. Some important results and understandings are gained from the images of the vertical velocity of mantle flow for East Asia and the West Pacific. There is an upwelling plume beneath East Asia and West Pacific, which is the earth’s deep origin for the huge rift valley there. We have especially outlined the tectonic features of the South China Sea, which is of the “工” type in the upper mantle shield type in the middle and divergent in the lower; the Siberian clod downwelling dives from the surface to near Core and mantle bounary (CMB), which is convergent in the upper mantle and divergent in the lower mantle; the Tethyan subduction region, centered in the Qinghai-Tibet plateau, is visible from 300 to 2 000 km, which is also convergent in the upper mantle and divergent in the lower mantle. The three regions of mantle convection beneath East Asia and the West Pacific are in accordance with the West Pacific, Ancient Asia and the Tethyan structure regions. The mantle upwelling originates from the core-mantle boundary and mostly occurs in the middle mantle and the lower part of the upper mantle. The velocities of the vertical mantle flow are about 1–4 cm per year and the tangential velocities are 1–10 cm per year. The mantle flow has an effect on controlling the movement of plates and the distributions of ocean ridges, subduction zones and collision zones. The mantle upwelling regions are clearly related with the locations of hotspots on the earth’s surface. Translated from Geology in China, 2006, 33(4): 896–905 [译自: 中国地质]  相似文献   

9.
Large-scale facies associations typical of intra- and pericratonic Riphean sections of the Volga–Ural region, western slope of the Urals, Timan–Pechora region, Kola Peninsula, outer and inner parts of the Siberian, North American, and Indian platforms are considered. The reconstruction of their lateral and vertical relationships makes it possible to reconstruct principal trends in the evolution of late Precambrian sedimentary basins. Recommended special studies aimed at the restoration of spatial architecture of associations retained in fragments of Riphean sedimentary basins could yield a substantially new information on the basin filling. Such approach has important implications for estimation of the potential of late Precambrian sedimentary basins with respect to the exploration for mineral resources including hydrocarbons.  相似文献   

10.
We studied the distribution of organic carbon in rocks of the Bazhenov horizon, a unique object of predominantly biogenic sedimentation in the West Siberian sedimentary basin. The contents of organic carbon in the rocks were determined using the data from 4094 core analyses and core-log relationships derived from 48,500 radioactive- and electrical-log measurements. For the Bazhenov and Tutleima Formations, both approaches gave the same results. The average content of organic carbon in the rocks is 7.7%. These data were used to compile a detailed map of the distribution of organic carbon contents in sedimentary rocks of the basin. It was shown that the average organic carbon content in the rocks increases from 2-4% on the periphery of the basin to 10-12% in its central, deepest part. The distribution of Corg values in the basin is highly asymmetric. The highest Corg values are observed in the southwestern part of the basin interior, where beds with > 10% Corg range in thickness from 5 to 12-15 m. In sections, the highest Corg values are observed in their middle and upper parts, composed predominantly of silicites and mixtites enriched in biogenic silica.  相似文献   

11.
Phenolics’ occurrence in surface water of the Dniester river basin (West Ukraine) with the definition of the natural background is studied. The main attention is given to the Upper Dniester basin and its tributary Stryj as the parts of the Sub-Carpathian oil- and gas province with the numerous objects of oil industry. The total amount of phenolics in water is studied. Phenolics’ concentrations from the first micrograms to the first milligrams per litre have been found in the surface water of the region. The natural background is defined as 0.012 mg l−1 for the areas out of the industrial influence. The anthropogenic part of phenolics is caused mainly by oil industry. The oil-producing objects provide the main phenolics’ releases in the region, due to the low protection level of mechanical facilities as well as to breach of technological norms on the oil-extracting objects. A man-made pollution of the basin water has a regional character and the natural self-purification processes seem to be insufficient for its neutralisation on the plains in particular.  相似文献   

12.
East Siberia comprises three petroleum provinces—Lena-Tunguska, Lena-Vilyuy, and Yenisey-Anabar—that occupy the area of the Siberian craton. Petroleum has been generated and has accumulated in Precambrian rifts beneath the sedimentary basins and, more importantly, within the section of the basin itself. The platformal deposits of the basins extend beneath overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian overthrusts on the east and south and are covered by sedimentary rocks of the West Siberian province on the west. Permafrost and gas hydrate deposits are present throughout most of East Siberia.

In the Lena-Tunguska province, rifts that developed during Riphean time are filled by thick sedimentary rocks, in which petroleum deposits have formed. In Early Cambrian time a barrier reef extended across the East Siberian craton from southeast to northwest. A lagoon to the west of this reef was the site of thick rhythmic salt deposits, which are the main seal for petroleum in the province. The sedimentary section of the platform cover ranges in age from Late Proterozoic to Permian. More than 25 oil and gas fields have been discovered in the province, all in Riphean through Lower Cambrian rocks.

The Lena-Vilyuy province includes the Vilyuy basin and the Cis-Verkhoyansk foredeep. During Middle Devonian time, a rift formed along the axis of what was to become the Vilyuy basin. This rift is filled by Upper Devonian and Lower Carboniferous basalt, elastics, carbonates, and evaporites. During this rift stage the region that was to become the Cis-Verkhoyansk foredeep was an open geosynclinal sea. The sedimentary cover consists of Permian, coal-bearing sedimentary rocks as well as elastics from the Lower Triassic, Lower Jurassic, Lower Cretaceous, and Upper Cretaceous, the latter only in the Vilyuy basin. In the Lena-Vilyuy petroleum province as many as nine gas and gas-condensate fields have been discovered.

The Yenisey-Anabar province is largely an extension of the West Siberian petroleum province. Permian sedimentary rocks are present only in the east, where they consist of elastics and some salt. The Triassic, Jurassic, and Cretaceous each are represented by thick clastic deposits. Total thickness of the sedimentary cover is up to 15 km on the west and 8 km on the east. Twelve gas and gas-condensate fields have been discovered in the western part of the province.  相似文献   

13.
Analysis of the geology of the islands and interpretation of seismic sections of the western part of the East Siberian Sea shelf revealed two types of basaltic magmatism. The Cretaceous fissure volcanism mostly developed in the Anzhu trough. The south wall of the New Siberian basin contains a cone-shaped paleoedifice, which is evidence of the formation of the central type volcanoes.  相似文献   

14.
The Maurynya section exposed on the northwestern margin of West Siberia is one of few continuous sections of the Jurassic-Cretaceous boundary deposits in Boreal regions. In the meantime, it can be considered a reference section for the transitional Volgian-Ryazanian beds formed in shallow water environments of the West Siberian sea basin. This study is a synthesis of the new data with previous results of lithologic, paleontological, biostratigraphic, and (O, C, Sr) isotope studies of the Upper Volgian-lowermost Ryazanian of the Maurynya section. It has been established that the beginning of the Cretaceous (corresponding to the middle Late Volgian) is associated with a sharp increase in species number and diversity of cephalopods and bivalve mollusks on the northwestern margin of the West Siberian sea basin. This can be explained by an increase in its depths and their stabilization at a level which appeared optimal for the habitat of nekton, nektobenthos, and benthic fauna communities, superimposed on the general trend of warming. At the same time, the percentage of phytoplankton significantly increased, indicating the onset of transgression, which affected largely coastal landscapes and type of vegetation: The forests dominated by conifers were gradually succeeded by forests mostly composed of Ginkgoaceae.  相似文献   

15.
The thorough analysis and correlation of Middle-Upper Eocene sections in the Omsk trough (southern West Siberian Platform) recovered by Borehole 9 in its axial part near the Chistoozernoe Settlement (Novosibirsk region) and Borehole 8 on the southern limb near the Russkaya Polyana Settlement (southern Omsk region) revealed hiatuses at the base and top of the Russkaya Polyana Beds, a lithostratigraphic unit defined in the Lyulinvor Formation based on its substantially fine-grained composition and poor siliceous microplankton fossil remains. The overlying Tavda Formation (Middle-Upper Eocene) is traditionally accepted to consist of two subformations. The last formation was deposited in the West Siberian inner sea isolated from the Arctic basin. Particular attention is paid to eustatic sea level fluctuation especially during the period marked by accumulation of Azolla Beds under considerable desalination of surface waters in the basin. The curve of variations in the open sea factor based on the quantitative ratio between organic-walled phytoplankton fossils and higher plant palynomorphs is correlated with the modified version of the wellknown Vail curve. It is established that the West Siberian sea level experienced a brief rise in the terminal late Eocene prior to its complete desiccation at the Eocene-Oligocene transition because of global regression in response to glaciation in Antarctica.  相似文献   

16.
Structural-petrologic and isotopic-geochronologic data on magmatic, metamorphic, and metasomatic rocks from the Chernorud zone were used to reproduce the multistage history of their exhumation to upper crustal levels. The process is subdivided into four discrete stages, which corresponded to metamorphism to the granulite facies (500–490 Ma), metamorphism to the amphibolite facies (470–460 Ma), metamorphism to at least the epidote-amphibolite facies (440–430 Ma), and postmetamorphic events (410–400 Ma). The earliest two stages likely corresponded to the tectonic stacking of the backarc basin in response to the collision of the Siberian continent with the Eravninskaya island arc or the Barguzin microcontinent, a process that ended with the extensive generation of synmetamorphic granites. During the third and fourth stages, the granulites of the Chernorud nappe were successively exposed during intense tectonic motions along large deformation zones (Primorskii fault, collision lineament, and Orso Complex). The comparison of the histories of active thermal events for Early Caledonian folded structures in the Central Asian Foldbelt indicates that active thermal events of equal duration are reconstructed for the following five widely spiced accretion-collision structures: the Chernorud granulite zone in the Ol’khon territory, the Slyudyanka crystalline complex in the southwestern Baikal area, the western Sangilen territory in southeastern Tuva, Derbinskii terrane in the Eastern Sayan, and the Bayankhongor ophiolite zone in central Mongolia. The dates obtained by various isotopic techniques are generally consistent with the four discrete stages identified in the Chernorud nappe, whereas the dates corresponding to the island-arc evolutionary stage were obtained only for the western Sangilen and Bayankhongor ophiolite zone.  相似文献   

17.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

18.
This paper is concerned with study and comparison of Berriasian, Valanginian, and lower Hauterivian foraminifer associations in northeastern West Siberia. Micropaleontological analysis of the Lower Cretaceous deposits of the Ust’-Yenisei region has given an insight into the taxonomic composition of microfossils in the studied sections. Analysis of the stratigraphic occurrence of foraminifers has revealed four successive biostratons in zones and beds. Communities of Berriasian, Valanginian, and earliest Hauterivian microbenthos are reconstructed, the regularities of their evolution are established, and the succession of bionomic zones is determined.  相似文献   

19.
The distributions of stable carbon and oxygen isotopes in modern and ancient limestones of various types were studied. Carbonate samples from modern sediments were collected in the Black and Barents Seas. Ancient carbonates were represented by Upper Jurassic (Kimmeridgian-Tithonian) limestones from the central part of the West Siberian basin. Carbonate samples include remains of modern and Upper Jurassic fauna, carbonate crust from sediments of the Black Sea, carbonate tube from sediments of the Barents Sea, and Upper Jurassic limestone from the carbonate layer found at top of Abalak, bottom of Bazhenov deposits in the central part of the West Siberian basin. According to the results of the isotope analysis and comparison with modern carbonates, Upper Jurassic limestones of the West Siberian basin belong to the group of methane-derived carbonates and precipitated as a result of anaerobic oxidation of methane (AOM). Fractures in limestones are filled with secondary calcite.  相似文献   

20.
New data were obtained for the Chulym River basin in the southeastern part of the West Siberian Plain, one of the understudied parts of Siberia in terms of age and composition of carbon and nitrogen stable isotopes for Late Pleistocene megafauna. The 14C dates from the Sergeevo outcrop, the most complete section of Late Quaternary deposits in the region, are mostly greater than ~30 550 bp. Other localities yielded 14C values in the range from >44 500 to ~19 300 bp. The finite date of ~42 270 bp for the Khozarian steppe elephant (Mammuthus trogontherii chosaricus) from Asino is intriguing because previously it was not detected in the Late Pleistocene of Siberia after the last interglacial (Marine Isotope Stage 5e), ~115 000–130 000 years ago. Stable isotope data show both similarities and differences compared to the pre-Last Glacial Maximum megafaunal species in other parts of Siberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号