首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the results of collapse calculations for uniformly rotating, prolate clouds performed using the numerical method: smoothed particle hydrodynamics (SPH). The clouds considered are isothermal, prolate spheroids with different axial ratios ( a/b ), and with different values of β, the ratio of the rotational to gravitational energy. Small density perturbations are added to the clouds, and different initial perturbation spectra are studied. All of the clouds considered are strongly unstable to gravitational contraction, and so collapse to form a spindle configuration. Such a linear structure is unstable to fragmentation, so that the clouds break up into a number of subcondensations. The long-term evolution of the system is then determined by the angular momentum possessed by these fragments.
It is found that a number of the calculations performed result in the formation of orbitally stable binary systems, composed of two rotationally supported discs in orbit about their common centre of mass. Tidal interactions during closest approach, close three-body interactions and the continued accretion of material with high specific angular momentum are all found to increase the orbital separation during these calculations, ensuring that the systems do not merge at later times. The calculations are therefore relevant to the problem of binary star formation, though the systems produced tend to have large orbital separations and periods. One of the strong points of the models presented, however, is their ability to produce systems with a range of mass ratios and orbital eccentricities, without the explicit inclusion of biases in the initial conditions.  相似文献   

2.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   

3.
The fragmentation process in collapsing clouds with various metallicities is studied using three-dimensional nested-grid hydrodynamics. Initial clouds are specified by three parameters: cloud metallicity, initial rotation energy and initial cloud shape. For different combinations of these parameters, we calculate 480 models in total and study cloud evolution, fragmentation conditions, orbital separation and binary frequency. For the cloud to fragment during collapse, the initial angular momentum must be higher than a threshold value, which decreases with decreasing metallicity. Although the exact fragmentation conditions depend also on the initial cloud shape, this dependence is only modest. Our results indicate a higher binary frequency in lower metallicity gas. In particular, with the same median rotation parameter as in the solar neighbourhood, a majority of stars are born as members of binary/multiple systems for  <10−4 Z  . With initial mass  <0.1 M  , if fragments are ejected in embryo from the host clouds by multibody interaction, they evolve to substellar-mass objects. This provides a formation channel for low-mass stars in zero- or low-metallicity environments.  相似文献   

4.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

5.
刘尧  王红池 《天文学进展》2011,29(2):148-167
原行星盘是环绕在年轻星天体(如T Tauri型星,HAe/Be星)周围的气体尘埃盘,是具有初始角动量的分子云核在塌缩形成恒星过程中的自然结果,是行星系统的起源地。原行星盘研究不仅是恒星形成理论的重要组成部分,而且是行星形成理论的基础。首先介绍了盘的形成与演化规律;然后介绍了年轻星天体的能谱分布,盘的模型和参数(质量吸积率、质量、尺度、温度、寿命);随后讨论了尘埃颗粒在盘中生长的观测证据以及行星在盘中形成的大致过程;最后对原行星盘研究的现状和未来做了总结与展望。  相似文献   

6.
We present three-dimensional numerical simulations on binary formation through fragmentation. The simulations follow gravitational collapse of a molecular cloud core up to growth of the first core by accretion. At the initial stage, the gravity is only slightly dominant over the gas pressure. We made various models by changing initial velocity distribution (rotation speed, rotation law, and bar-mode perturbation). The cloud fragments whenever the cloud rotates sufficiently slowly to allow collapse but faster enough to form a disk before first-core formation. The latter condition is equivalent to Ω0 t ff ? 0.05, where Ω0 and t ff f denote the initial central angular velocity and the freefall time measured from the central density, and the condition is independent of the initial rotation law and bar-mode perturbation. Fragmentation is classified into six types. When the initial cloud rotates rigidly the cloud collapses to form a adiabatic disk supported by rotation. When the bar-mode perturbation is very minor, the disk deforms to a rotating bar, and the bar fragments. Otherwise, the adiabatic disk evolves into a central core surrounded by a circumstellar disk, and the the circumstellar disk fragments. When the initial cloud rotates differentially, the cloud deforms to a ring or bar in the isothermal collapse phase. The ring fragments into free or more cores, while the bar fragments into only two cores. In the latter case, the core merges due to low orbital angular momentum and new satellite cores form in the later stages.  相似文献   

7.
Brosche (1970) has proposed a theory in which the energy loss due to collisions among gas clouds contained in a galaxy constitutes the driving mechanism for its evolution, through virial equilibrium states which, from an initial spherical shape, makes it to contract towards an elongated form; moreover, the value of the total angular momentum, assumed as given by uniform rotation, is assumed to determine the galaxy type on the Hubble sequence and to strongly influence the contraction time from the initial spherical to the final flat configuration.We have modified Brosche's scheme by assuming as models the rotating polytropes of Chandrasekhar and Lebovitz with variable density from centre to border. As a consequence of this change, centrifugal shedding of matter is attained at the equator of the contracting ellipsoid for a configuration with an axial ratio different from zero, so that, hereafter, a flat disk is formed surrounding the internal bulge, with a decreasing overall eccentricity; the rotation curve assumes then an aspect qualitatively similar to the one observed for spiral galaxies.We have further considered the feedback of star formation which, by exhausting the material of the gas clouds, is able to stop the driving mechanism of evolution before the final flat stage is attained at several positions according to the value of the angular momentum.Numerical calculations seem to indicate that one can obtain in this way, by varying the angular momentum and the initial number of clouds, different galaxy types (elliptical, lenticular, spiral) resembling those of the Hubble sequence.  相似文献   

8.
We investigate the formation and evolution of isothermal collapse nonuniformity for rotating magnetic interstellar clouds. The initial and boundary conditions correspond to the statement of the problem of homogeneous cloud contraction from a pressure equilibrium with the external medium. The initial uniform magnetic field is collinear with the angular velocity. Fast and slow magnetosonic rarefaction waves are shown to be formed and propagate from the boundary of the cloud toward its center in the early collapse stages. The front of the fast rarefaction wave divides the gas mass into two parts. The density, angular velocity, and magnetic field remain uniform in the inner region and have nonuniform profiles in the outer region. The rarefaction wave front surface can take both prolate and oblate shapes along the rotation axis, depending on the relationship between the initial angular velocity and magnetic field. We derive a criterion that separates the two regimes of rarefaction wave dynamics with the dominant role of electromagnetic and centrifugal forces. Based on analytical estimations and numerical calculations, we discuss possible scenarios for the evolution of collapse nonuniformity for rotating magnetic interstellar clouds.  相似文献   

9.
On the basis of 'sticky particle' calculations, it is argued that the gas features observed within 10 pc of the Galactic Centre — the circumnuclear disc (CND) and the ionized gas filaments — as well as the newly formed stars in the inner 1 pc can be understood in terms of tidal capture and disruption of gas clouds on low angular momentum orbits in a potential containing a point mass. The calculations demonstrate that a dissipative component forms a 'dispersion ring', an asymmetric elliptical torus precessing counter to the direction of rotation, and that this shape can be maintained for many orbital periods. For a range of plausible initial conditions, such a structure can explain the morphology and kinematics of the CND and of the most conspicuous ionized filament. While forming the dispersion ring, a small cloud with low specific angular momentum is drawn into a long filament which repeatedly collides with itself at high velocity. The compression in strong shocks is likely to lead to star formation even in the near tidal field of the point mass. This process may have general relevance to accretion on to massive black holes in normal and active galactic nuclei.  相似文献   

10.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

11.
A very well-known property of close binary stars is that they usually rotate slowly than a similar type single star. Massive stars in close binary systems are supposed to experience an exchange of mass and angular momentum via mass transfer and tidal interaction, and thus the evolution of binary stars becomes more complex than that of individual stars. In recent times, it has become clear that a large number of massive stars interact with binary companions before they die. The observation also reveals that in close pairs the rotation tends to be synchronized with the orbital motion and the companions are naturally tempted to invoke tidal friction. We here introduce the effect of tidal angular momentum in the model of wind driven non-conservative mass transfer taking mass accretion rate as uniform with respect to time. To model the angular momentum evolution of a low mass main sequence companion star can be a challenging task. So, to make the present study more interesting, we have considered initial masses of the donor and gainer stars at the proximity of bottom-line main sequence stars and they are taken with lower angular momentum. We have produced a graphical profile of the rate of change of tidal angular momentum and the variation of tidal angular momentum with respect to time under the present consideration.  相似文献   

12.
We consider an interstellar interloper moving at a relatively large distance from a circular binary star. We use the analytical method of separating rapid and slow subsystems, the rapid subsystem being the binary and the slow subsystem being the interstellar interloper. We show that due to the higher than geometrical symmetry of the problem, in addition to the conservation of the energy and the projection of the angular momentum on the axis of the rotation of the binary, the square of the angular momentum is also conserved. In the course of the time evolution, the vector of the angular momentum rotates about that axis at the constant angle to the axis. After obtaining this general counterintuitive result, we focus at the case where the interstellar interloper is coplanar with the binary. We provide an explicit equation of the motion of the interloper. Then we calculate analytically the angle of deflection of the interloper from the straight line. We analyze the difference in the angle of deflection between this three-body problem and the corresponding two-body problem: we show that this difference remains almost constant (a negative constant) at the range of the eccentricities of the interloper trajectory relatively close to unity and linearly increases (by the absolute value, remaining negative) with the eccentricity as the latter becomes much greater than unity.  相似文献   

13.
Summary Cosmic dust grains play an important role for the thermal, dynamical, and chemical structure of the interstellar medium. This is especially true for the star formation process and the late stages of stellar evolution. Dust grains determine the spectral appearance of protostars, very young stellar objects with disk-like structures as well as of evolved stars with circumstellar envelopes.In this review, we will demonstrate that solid particles in interstellar space are both agent and subject of galactic evolution. We will especially discuss the different dust populations in circumstellar envelopes, the diffuse interstellar medium, and the molecular clouds with strong emphasis on the evolutionary aspects and the metamorphosis of these populations.  相似文献   

14.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

15.
Self-consistent multicomponent models of evolution of the interstellar medium have been computed by extending the scheme of Habeet al. (1981) and adding some processes of star formation in molecular clouds, induced by supersonic collisions. A monochromatic spectrum of the molecular clouds has been adopted with a cloud mass of 104 M . The consequences of these simplifying assumptions have been discussed and moreover the influence of several parameters (efficiency of star formation, photoionization rate, cloud radius, and mass) and of the initial conditions has been analyzed. Emphasis has been put on the following points: (1) there is a strong conditioning of the physical state of the intercloud gas on the star formation rate; (2) depending on the total initial mass of the molecular clouds per unit volume , two different regimes of star formation are possible: one, when is larger than a critical value cr, dominated by collisions between clouds, with a total star formation rate practically constant and a long lifetime for the system, the other, characterized by <cr, in which the dominant process is due to the expansion ofHii regions: the resulting star formation rate causes the system exhaustion in a relatively short lifetime. Some suggestions are derived concerning the evolution of galaxies.  相似文献   

16.
We analyze the gravitational stability of a shocked interstellar gas layer and show how such a layer fragments into protostellar condensations whilst it is still confined mainly by ram pressure. As a consequence, the resulting protostars are massive and well separated. Our analysis is completely general and applies both to layers resulting from collisions between molecular cloud clumps, and to shells swept up by expanding nebulae. We present a numerical simulation of the former scenario, which produces a cluster of 35 massive stars resembling an OB subgroup, with most of the stars in binary systems.  相似文献   

17.
Axial rotation of a star plays an important role in its evolution, physical conditions in its atmosphere and the appearance of its spectrum. We analyzed CCD spectra of nine stars for which the projected rotational velocity derived from the Ca II line at λ 3933 Å was remarkably lower than the one derived from the MgII line at λ 4481 Å. We derived effective temperatures and surface gravities using published uvbyβ photometries, and computed synthetic spectra. Comparing the observed line profiles of the two lines with the computed ones, we estimated the values of v sin i. One of the stars, HD44783, is a Be-star which, besides the narrow absorptions in the spectrum originating in its circumstellar envelope, also has lines of interstellar origin. We also found indications of circumstellar matter in the spectrum of HD25152. In the spectra of the remaining seven stars the narrow components in the Ca II λ 3933 Å line as well as narrow absorptions in the Na I λ 5889.951 Å (D1) and λ 5895.924 Å (D2) lines are of interstellar origin. In HD114376 there are two systems of interstellar components, thus disclosing two different interstellar clouds in the direction of the star. In the spectrum of HD138527 signs of a possible companion were detected, the emission of which contributes 15% to the total light of the system.  相似文献   

18.
It is shown that the observed variety in macrostructures of continuous spectra in the ultraviolet (2000–3000 Å) of hot stars is a result of the presence of circumstellar clouds around such stars. A method for calculations of synthetic spectra, originating as a result of passage of central star photospheric radiation through its own circumstellar cloud, is developed. It introduces a new idea of spectral class for circumstellar cloud, and a recommended method for its determination depending from the spectral class of central star and cloud's parameters (Figure 2). The results of calculations of synthetic spectra for the four combinations of system star+cloud are presented (Figures 7-10). The strongest influence of circumstellar cloud in ultraviolet is discovered on A-class stars (Figure 13). Graphic relations are introduced for determination of cloud power by observed parameters of synthetic spectra (Figures 14 and 15).It establishes an important fact for an understanding of the nature of circumstellar clouds and processes occurring in them, according to which the selective absorption in such clouds stimulatesresonance lines only, the largest number of which lies in the ultraviolet in the region of 2100–2600 Å (Figure 1). An absence of visible signs of the effect of circumstellar clouds on continuous spectra of stars in visual region can be explained by a very small number of resonance lines in this region.Lastly, the possibility of determination of physical and geometric parameters of circumstellar clouds from stellar continuous spectra in the ultraviolet is analysed.  相似文献   

19.
From observations of interstellar Mgi, ii resonance lines, Gurzadyan has proposed recently that for the majority of hot stars most of the line-of-sight gas originates in dense, circumstellar clouds. To support this conclusion, which is contrary to most current models of the interstellar gas, he has set out apparently strong theoretical arguments based on empirical evidence from the sample of stars considered. In this paper we have considered the same data and have included some additional observations of interstellar Mg lines. We suggest that an empirical relationship between Mgii equivalent width and stellar effective temperature, which is central to the model proposed by Gurzadyan, may be explained by an observational selection effect. Further, we suggest that while circumstellar material may well contribute in part to observed column densities, there is no firm evidence that most of the gas is located in circumstellar clouds.Based in part on observations by the International Ultraviolet Explorer satellite collected at the Villafranca Tracking Station of the European Space Agency.  相似文献   

20.
We develop a three-dimensional numerical model for an ensemble of molecular clouds moving in the fixed gravitational potential of a galaxy. This scheme is a modification of the widely known model of Oort and includes different processes of coagulation and fragmentation of clouds under pairwise collisions, interaction of clouds with the diffuse interstellar medium, and also feedback: the breaking up of clouds into small fragments under the action of stars arising in them. This model makes it possible to study the influence of various parameters of both the galaxy itself and the ensemble of molecular clouds on the process of large-scale star formation connected with giant molecular clouds and on the temporal changes of the global structure of the interstellar medium. We give as an example a computation of the evolution of the energy characteristics of an ensemble of molecular clouds in a spiral galaxy.Translated fromAstrofizika, Vol. 37, No. 4, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号