首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this study is to experimentally investigate the effect of temperature on the seepage transport of suspended particles (SP) with a median diameter of 10–47 μm in a porous medium for various seepage velocities. The results show that the rise of temperature accelerates the irregular movements of SPs in the porous medium and reduces their migration velocity. As a result, the pore volume corresponding to the peak value of the breakthrough curves is apparently delayed, and the peak value in the effluent is decreased. The migration velocity of SPs decreases with increasing particle size, regardless of the Darcy velocity and temperature. The longitudinal dispersivity of SPs decreases slightly with increasing temperature and then remains almost unchanged. Larger particles experience more irregular movements induced by the limit of pore size, which leads to a larger dispersivity. The deposition coefficient increases with increasing temperature, especially in the case of a high seepage velocity, and then tends to be stable. The deposition coefficient for large‐sized particles is higher than that for small‐sized particles, which can be attributed to the restriction of large‐sized particles by the narrow pores in the porous medium. The recovery rate decreases slightly with the increase of temperature until a critical value is reached, beyond which it remains almost unchanged. In summary, temperature is a significant factor affecting the transport and deposition of SPs in the porous medium, and the transport parameters such as particle velocity, dispersivity, and deposition coefficient.  相似文献   

2.
Song‐Bae Kim 《水文研究》2006,20(5):1177-1186
A mathematical model to describe bacterial transport in saturated porous media is presented. Reversible/irreversible attachment and growth/decay terms were incorporated into the transport model. Additionally, the changes of porosity and permeability due to bacterial deposition and/or growth were accounted for in the model. The predictive model was used to fit the column experimental data from the literature, and the fitting result showed a good match with the data. Based on the parameter values determined from the literature experimental data, numerical experiments were performed to examine bacterial sorption and/or growth during bacterial transport through saturated porous media. In addition, sensitivity analysis was performed to investigate the impact of key model parameters for bacterial transport on the permeability and porosity of porous media. The model results show that the permeability and porosity of porous media could be altered due to bacterial deposition and growth on the solid matrix. However, variation of permeability due to bacterial growth was trivial compared with natural permeability variation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Sizeable amounts of connected microporosity with various origins can have a profound effect on important petrophysical properties of a porous medium such as (absolute/relative) permeability and capillary pressure relationships. We construct pore-throat networks that incorporate both intergranular porosity and microporosity. The latter originates from two separate mechanisms: partial dissolution of grains and pore fillings (e.g. clay). We then use the reconstructed network models to estimate the medium flow properties. In this work, we develop unique network construction algorithms and simulate capillary pressure–saturation and relative permeability–saturation curves for cases with inhomogeneous distributions of pores and micropores. Furthermore, we provide a modeling framework for variable amounts of cement and connectivity of the intergranular porosity and quantifying the conditions under which microporosity dominates transport properties. In the extreme case of a disconnected inter-granular network due to cementation a range of saturations within which neither fluid phase is capable of flowing emerges. To our knowledge, this is the first flexible pore scale model, from first principles, to successfully approach this behavior observed in tight reservoirs.  相似文献   

4.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions.  相似文献   

5.

弹性孔隙介质分界面上的反透射系数特征,在岩性划分、流体识别、储层边界判识等方面有重要的应用.本文研究上层为含两项不混合黏性流体孔隙介质、下层为含单项黏性流体孔隙介质分界面上的反透射理论.首先根据两种孔隙介质分界面上的能量守恒得到边界条件,再将波函数、位移、应力与应变关系代入边界条件,推导出完全连通孔隙情况下,第一类纵波入射到孔隙介质分界面上的反透射系数方程.通过建立砂岩孔隙介质模型,分别分析不同孔隙流体类型、不同含油饱和度及不同入射角情况下,各类波的反透射系数特征.研究表明,第二、三类纵波反透射系数数值比第一类纵波小多个数量级,且两者对入射角的变化不敏感,但对孔隙流体性质、含油饱和度的变化较敏感,而横波反透射系数特征恰好与此相反;第一类纵波反透射系数特征比较复杂,入射角、孔隙流体的性质及含油饱和度的变化都对其产生影响.不同孔隙流体弹性物性的差异、孔隙介质中含油饱和度的变化及不同入射角引起垂向和切向应力分量的变化都会影响各类波的反透射系数特征,分析这些特征可以为研究储层含油气性提供理论基础.

  相似文献   

6.
本文综合考虑了在波传播过程中孔隙介质的三种重要力学机制——"Biot流动机制一squirt流动机制-固体骨架黏弹性机制",借鉴等效介质思想,将含水饱和度引入波动力学控制方程,并考虑了不同波频率下孔隙流体分布模式对其等效体积模量的影响,给出了能处理含粘滞性非饱和流体孔隙介质中波传播问题的黏弹性Biot/squirt(BISQ)模型。推导了时间-空间域的波动力学方程组,由一组平面谐波解假设,给出频率-波数域黏弹性BISQ模型的相速度和衰减系数表达式。基于数值算例分析了含水饱和度、渗透率与频率对纵波速度和衰减的影响,并结合致密砂岩和碳酸盐岩的实测数据,对非饱和情况下的储层纵波速度进行了外推,碳酸盐岩储层中纵波速度对含气饱和度的敏感性明显低于砂岩储层。  相似文献   

7.
《Advances in water resources》2007,30(6-7):1608-1617
Populations of chemotactic bacteria are able to sense and respond to chemical gradients in their surroundings and direct their migration toward increasing concentrations of chemicals that they perceive to be beneficial to their survival. It has been suggested that this phenomenon may facilitate bioremediation processes by bringing bacteria into closer proximity to the chemical contaminants that they degrade. To determine the significance of chemotaxis in these processes it is necessary to quantify the magnitude of the response and compare it to other groundwater processes that affect the fate and transport of bacteria. We present a systematic approach toward quantifying the chemotactic response of bacteria in laboratory scale experiments by starting with simple, well-defined systems and gradually increasing their complexity. Swimming properties of individual cells were assessed from trajectories recorded by a tracking microscope. These properties were used to calculate motility and chemotaxis coefficients of bacterial populations in bulk aqueous media which were compared to experimental results of diffusion studies. Then effective values of motility and chemotaxis coefficients in single pores, pore networks and packed columns were analyzed. These were used to estimate the magnitude of the chemotactic response in porous media and to compare with dispersion coefficients reported in the field. This represents a compilation of many studies over a number of years. While there are certainly limitations with this approach for ultimately quantifying motility and chemotaxis in granular aquifer media, it does provide insight into what order of magnitude responses are possible and which characteristics of the bacteria and media are expected to be important.  相似文献   

8.
9.
This work is a continuation of Musuuza et al. [37] in which a stability criterion for density-driven flow in a saturated homogeneous medium was derived. The criterion predicted the stability of a system as a function of the density and viscosity contrasts, the magnitude of the flow velocity and the concentration gradients for flow aligned orthogonal to gravity. It could not accurately predict stability transition with increasing velocity, a failure we attributed to dispersion effects that were not included. Small-scale dispersion and molecular diffusion, the main stabilising mechanisms in homogeneous media can stabilise flow if the instability wavelengths are below a certain cutoff. The width of the mixing zone is also central in controlling the range of wavelengths that persist into fingers. We propose a method of quantifying the cutoff wavelength and the width of the mixing zone, which are incorporated into the earlier criterion as constituents of the dispersive part. The earlier criterion is reformulated in terms of the Rayleigh number and with the dispersive part added, we attempt to predict the number of fingers formed which is directly related to the physical stability of the system. The inclusion of the Rayleigh number and dispersion into a single stability criterion provides new insight in the way dispersion affects vertical flow systems. Stability numbers computed with the new criterion are in reasonable agreement with numerical simulations for a range of physical variables. The numerical computations are performed with the software package d3f, which uses the cell-centred finite volume and the implicit Euler methods for the spatial and temporal discretisations, respectively. The admission of the density and dispersivities as inputs into the criterion makes it usable in practical problems.  相似文献   

10.
饱和多孔微极介质的波动方程及其势函数方程   总被引:1,自引:0,他引:1       下载免费PDF全文
胡亚元 《地球物理学报》2005,48(5):1132-1140
土是由一定尺寸大小颗粒所构成的多孔介质,具有明显的颗粒特性,当土颗粒间的孔隙被流体(如水或油)充满时则成为饱和土.利用微极理论和Biot波动理论的研究成果,把饱和土中多孔固体骨架部分近似地视为微极介质,孔隙中的流体部分视为质点介质,获得饱和多孔微极介质的弹性波动方程.借鉴Greetsma理论,建立了饱和多孔微极介质弹性本构方程力学参数与相应单相介质弹性参数的相互关系,使饱和多孔微极介质弹性波动方程中的物理参数具有明确的物理意义,易于在试验中确定.运用场论理论把饱和多孔微极介质的波动方程简化为势函数方程,建立了饱和多孔微极介质中五种弹性波的弥散方程,数值分析了五种简谐体波在无限饱和多孔微极介质中的传播特性. 结果表明,P1波、P2波和剪切S1波的波速弥散曲线与经典饱和多孔介质基本相同,当频率小于临界频率ω0时旋转纵波θ波和横波S2波不存在,当频率大于临界频率ω0时,θ波和S2波的传播速度随频率增加而减小.  相似文献   

11.
Split-operator methods are commonly used to approximate environmental models. These methods facilitate the tailoring of different approximation approaches to different portions of the differential operator and provide a means to split large coupled problems into pieces that are more amenable to parallel computation than the original fully-coupled problem. However, split-operator methods introduce an additional source of approximation error into the solution, which is typically either ignored or controlled heuristically. In this work, we develop two methods to estimate and control the error in split-operator methods, which lead to a dynamic adjustment of the temporal splitting step based upon the error estimators. The proposed methods are shown to yield robust solutions that provide the desired control of error. In addition, for a typical nonlinear reaction problem, the new methods are shown to reduce the solution error by more than two orders of magnitude compared to standard methods for an identical level of computational effort. The algorithms introduced and evaluated have widespread applicability in environmental modeling.  相似文献   

12.
Thermal convection resulting from vertical temperature gradients in porous media is analyzed. The effect of heat dispersion is taken into account. It is found that heat dispersion increases the thermal stability of the flow field and may inhibit the appearance of convection currents, which would appear if dispersion effects are omitted.The longitudinal as well as the lateral dispersivities affect the thermal stability and the dimensions of the convection cells. As a result of the convection currents the horizontal streamlines in the steady state are distorted. The thermal convection exhibits internal waves in the field.  相似文献   

13.
This paper presents a study on suspended particle transport in porous medium with the aid of a sand layer transportation–deposition testing system to determine the kinetic characteristics of particles in porous medium under variable temperatures. Quartz sand and quartz powder were chosen as the porous medium and particle in the tests, respectively. Four size compositions and two operational modes, that is, temperature reduction mode (changing from 18°C to 5°C) and temperature increment mode (changing from 18°C to 35°C), were adopted. The turbidity and concentration of quartz powder were measured under various conditions. We observed a high temperature‐independent correlation between them. Breakthrough curves under different conditions were analysed using this testing system. The results showed that changes in temperature affected the particle transport process to some extent, and the degree of influence was closely related to the time moment of the temperature change onset. Moreover, we found a hysteresis phenomenon in the breakthrough curve under both temperature reduction and increment conditions. The results also indicated that the temperature effect was particularly significant for smaller particles. The typical curves to represent particle transport process under variable temperatures were put forward according to the results. To explain the test results, four factors, that is, water viscosity, adsorption effect, double layer force, and particle kinetic energy, were considered and categorized as promotion or constraining factors.  相似文献   

14.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

15.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

16.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

17.
The attenuation of stress waves in fluid saturated porous rock   总被引:5,自引:0,他引:5  
TheatenuationofstreswavesinfluidsaturatedporousrockDAOYINGXI(席道瑛)JINGYICHENG(程经毅)LIANGKUNYI(易良坤)BINZHANG(张斌)Departmentof...  相似文献   

18.
This work concludes the investigations into the stability of haline flows in saturated porous media. In the first part [33] a stability criterion for density-driven flow in a saturated homogeneous medium was derived excluding dispersion. In the second part [34], the effects of dispersion were included. The latter criterion made reasonable predictions of the stability regimes (indicated by the number of fingers present) as a function of density and dispersivity variations. We found out that destabilising variables caused an increase in the number of fingers and vice versa. The investigation is extended here for the effects of the medium heterogeneity. The cell problem derived via homogenization theory [20] is solved and its solution used to evaluate the elements of the macrodispersion tensor as functions of time for flow aligned parallel to gravity. The longitudinal coefficient exhibits asymptotic behaviour for favourable and moderately unfavourable density contrasts while it grows indefinitely for higher density contrasts. The range of densities stabilised by medium heterogeneities can thus be estimated from the behaviour of the coefficient. The d3f software program is used for the numerical simulations. The code uses the cell-centred finite volume and the implicit Euler techniques for the spatial and temporal discretisations respectively.  相似文献   

19.
20.
本文基于Biot的饱和多孔介质本构方程,考察具有辐射阻尼的外行球面波,推导了饱和多孔介质三维黏弹性人工边界的法向和切向边界方程;在已有的饱和多孔介质二维显式有限元数值计算方法基础上,提出该理论的三维方法,并开发了实现该三维方法的有限元程序.算例表明饱和多孔介质三维时域黏弹性人工边界与动力反应分析的显式有限元法具有较好的精度和稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号