首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
彭莉莉  邓剑波  谢傲 《暴雨灾害》2020,28(2):201-206

利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日—2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。

  相似文献   

2.
利用达县1959~1998年3~10月逐时降水资料,按逐时降水量≥0.1mm、≥5.0mm、≥10.0mm、≥20.0mm、≥25.0mm等标准分类作降水量、降水频次(概率)以及降水过程开始、结束、持续时间等方面的统计,得出了降水日变化的一些特征,同时对其成因进行了分析.  相似文献   

3.
利用库尔勒市2010—2016年主汛期(5—8月)逐时自动降水资料,得出主汛期共出现降水371次,累计降水量393.5 mm,进而分析了库尔勒市主汛期降水日变化特征,结果表明:降水日峰值在17:00,次峰值区在08:00—12:00,最低值出现在21:00;一天中降水频次最高的时刻为10:00,最低时刻在17:00和20:00。降水强度高值区出现在16:00—17:00,最低值出现在21:00和07:00。≥0.1 mm、≥1 mm、≥3 mm降水出现频次整体均呈现先上升后下降的趋势,分别在10:00、08:00和10:00、09:00达到最大,其中,≥0.1mm降水出现频次最多、≥3 mm出现频次最少。定时时次≥8成低云量出现频次和定时时次累计降水量变化均表现为02:00—08:00呈上升趋势,到08:00达到最大,随后逐渐降低。  相似文献   

4.
周泽英 《四川气象》2003,23(4):47-48
利用达县1959~1998年3~10月逐时降水资料,按逐时降水量≥0.1mm、≥5.0mm、≥10.0mm、≥20.0mm、≥25.0mm等标准分类作降水量、降水频次(概率)以及降水过程开始、结束、持续时间等方面的统计,得出了降水日变化的一些特征,同时对其成因进行了分析。  相似文献   

5.
彭莉莉  邓剑波  谢傲 《湖北气象》2020,39(2):201-206
利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日-2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。  相似文献   

6.
西南地区降水日变化特征分析   总被引:16,自引:0,他引:16       下载免费PDF全文
利用1960-2000年西南地区包括(川、渝、黔、滇四省(市))91个气象站的小时降水量自动记录信息化资料,计算和分析了西南地区过去40年间逐月逐日逐时的降水频率和降水比率.结果表明,西南地区各地各季逐时降水最大频率出现的时间较为分散,但四川、重庆和贵州部分地区夜雨频繁,而云南的降水则以白天降水为主;西南地区逐时降水相...  相似文献   

7.
江苏南部汛期降水日变化特征分析   总被引:1,自引:1,他引:1  
利用江苏南部20个气象观测站2008—2012年汛期(5—10月)逐小时降水资料,应用降水频率来分析了江苏南部地区降水日变化基本特征和区域差异。研究表明:降水日变化特征地域性差异较强,西部站、东部站和东北沿海站都存在一定的特征差异。东部站降水量的最大值主要出现在下午和傍晚;西部站降水量主峰值出现在下午,并且在清晨和夜间还有两个次峰值;东北沿海站呈现出午前、午后的双峰值形式。2008—2011年降水量下午高值区有先减弱后增强并提前的趋势,而上午的高值区有总体减弱并推迟的特征。2011年后有明显减弱的趋势。江苏南部总体来说,短时强降水(大于20和25 mm/h)在16—19时出现主峰值,07—09时也有相对较小的次峰值。  相似文献   

8.
利用1994~2013年5~9月喀什市气象站逐小时降水资料,分析喀什近20a降水日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07时至19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3h)为主,多发生在傍晚至夜间,1h降水频次最多的是量级≤1mm的降水,但1.1mm≤R1≤3.0mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

9.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

10.
利用1991-2004 年台站观测的逐时降水资料分析了我国西南部降水日变化的基本特征和区域差异。结果表明,西南部降水“夜雨”特征明显,但存在午后次峰值,且区域差异显著。降水频次和降水强度亦存在明显日变化,夜间降水量峰值主要来自于降水频次的贡献,而午后降水量峰值以降水强度的贡献为主。在25N以北,降水量的峰值位相超前于降水频次1~2 h 且自西向东存在区域差异。西部降水量主峰值在凌晨03—04 时,而中、东部在01—02时,中部和东部的区别主要在降水强度的日变化上,中部的强度日变化为午夜单峰值结构,而东部的午后强度较大。以南地区的降水日变化特征与北部明显不同,南部降水量主峰值出现在午后,且主要是强度的贡献,次峰值出现在凌晨 05—06时,以频次贡,献为主。  相似文献   

11.
汪小康  崔春光  刘柯  王晓芳 《气象》2024,50(4):393-406
基于国家级气象站逐小时降水资料,采用百分位阈值的极端降水定义方法,统计研究了中国1951—2021年4—10月小时降水时空分布和日变化特征。结果表明,中国主雨季极端降水阈值东南大、西北小,存在四个分别位于华南、环渤海、长江中下游和四川盆地的大值区,随着极端性增强,北方小时降水阈值的增大较南方更显著,大值中心北移。月尺度上,小时降水的最高频次月份由南向北从5月推迟至8月,华西地区最晚(9—10月),随着极端性增强,最高频次月份由6月、7月推迟到7月、8月,且地区差异减小。日变化特征上,全国范围内小时降水频次占比,呈现午后到夜间的谷峰主循环和后半夜到上午的次循环,且随着极端性增强,主循环振幅增大,次循环峰值减小。不同地理位置看,四川盆地的极端小时降水峰值时刻出现在凌晨,其他三个大值区则与全国平均较为一致,日变化振幅从南到北逐渐减小,西部最大。小时降水峰值时刻具有空间聚集的特征,夜间峰值主要集中在南方沿海和华北、东北,早晨—上午峰值集中在中部、东部、西南和西北部分地区,空间分布中出现的逐渐推迟和突变特征与海陆分布和大地形密切相关。小时降水峰值时刻空间占比与频次占比的日变化特征类似,均有上午峰值平缓、夜间峰值陡峭的特征,这是因为不同站点到达夜间峰值的时刻接近,而到达上午峰值的时刻不同;两者主要区别在随着极端性增强,频次占比夜间主峰值显著增大,而峰值时刻空间占比主峰值几乎不变,这是因为频次的变化主要是由同一些站点上的次数变化导致,而非不同站点之间的差异。  相似文献   

12.
选取1990~1999年贵州省3个国家基准站(威宁、贵阳、三穗)气象观测数据,评估了逼近法在贵州不同海拔地区计算湿球温度的效果,对比了BP(Back Propagation)神经网络模型和逼近法在计算湿球温度方面的优劣。结果表明:(1)3站逼近法计算值与观测值之间平均绝对误差分别为0.059℃、0.046℃、0.042℃,误差<0.1℃的数据比例为83.91%、91.52%、92.76%;当气温低于0℃时,误差>0.2℃的频率呈增长趋势,其原因可能是逼近法中对结冰的判别和实际情况存在差异导致高海拔地区的计算效果差于低海拔地区。(2)3站BP神经网络模型计算精度比逼近法分别提高60.71%、57.45%、57.78%,误差<0.1℃的数据比例提高到97.38%、97.18%、97.44%,有效地解决了高海拔地区气温低于0℃频率较高而导致逼近法计算误差偏大的问题,在低海拔地区的计算结果也优于逼近法。(3)BP神经网络模型计算湿球温度需要对各测站进行单独拟合,在低海拔地区针对大量站点且计算精度要求不高时可用逼近法,反之则用BP神经网络建立单站模型。  相似文献   

13.
赵玮  郝翠  曹洁  周璇  卢俐 《大气科学》2022,46(5):1167-1176
利用北京地区20个国家站1980~2020年的长期逐时降水资料,分析了北京夏季降水的基本气候特征和日变化时空分布特征。结果表明:(1)北京地区夏季40年平均降水量分布具有西北山区小,平原大,山区向平原过渡区的迎风坡最大的特点;降水频率则相反,平原降水频率整体小于山区;降水强度整体表现为西北弱,东部强,城区与南部居中的特点。北京夏季降水的强度和极端性较强,致灾风险高。(2)北京夏季平均降水量日变化主体呈单峰型,降水频次为双峰型,降水强度为多峰型,三者同时在22时(北京时,下同)达到最大,在12时最小。(3)降水的峰值时间随月份依次后推,6月最早,7月次之,8月最晚;峰值雨量7月最大,8月次之,6月最小。(4)降水量、降水频率和降水强度的日峰值空间分布具有较强的一致性,西北山区四站出现在20时以前,其余16站出现在20时及以后。使用K均值聚类算法将20站划分为两个区域,结果显示两个区域的降水量、降水频率和强度的日变化具有完全不同的分布特点。(5)近40年北京地区的降水结构在不断调整,短持续时间降水主导期和长持续时间降水主导期交替出现。2000年以前以小于6小时的短持续性降水为主,近15年大于6小时的长持续性降水明显增多。  相似文献   

14.

采用1981-2010年安徽省逐时降水资料, 从降水量、降水频次和降水强度三个方面对不同量级降水日变化进行分析, 研究表明:(1)降水量和降水频次呈双峰结构, 降水强度则无明显峰值。小雨和中雨降水量峰值时间主要在下午, 大雨呈现出上下午双峰结构, 暴雨的峰值则出现于上午。经分析, 这是由于不同日降水量级下持续性降水事件的构成不同所导致; (2)在空间分布上, 各量级降水日变化有明显区域性特征。总体来看量级较小的降水峰值出现时间的空间分布较为一致, 量级越大则一致性越差; (3)近30 a出现在下午的降水量峰值和降水强度峰值的年际变化较为一致, 均在1993-2001年间有所加强。且在东亚夏季风较强的年份, 安徽省降水峰值时间主要集中在午后; 而在弱季风年, 峰值时间出现于早晨的站点偏多。

  相似文献   

15.
河北地区边界层内不同高度风速变化特征   总被引:11,自引:4,他引:11  
为了研究城市化进程对风速变化的影响,利用1971-2006年河北省境内邢台、张家口和乐亭3个探空站高空风观测资料和对应地面站风观测资料,统计分析了边界层内距地面10m、300m、600m、900m 4个高度的长期风速变化特征,比较了不同高度风速变化趋势的异同.分析结果表明:3站年和季节平均风速随着距地面高度的增加而变大,但最大的风速垂直递增率出现在从10m到300m之间;各站各高度层月平均风速具有明显的季节变化特征,春季风速最大,夏季较小;在近36年里,3站平均的地面(10m高)年和季节平均风速变化存在显著的减少趋势,300m以上各高度层平均风速一般也降低,但远没有地面明显;不同高度平均风速变化趋势的差异可能主要是由城市化以及台站附近观测环境的改变引起的,这使得地面风速明显减弱;但地面以上各层平均风速同样存在一定减弱现象,说明背景大气环流的变化也是地面风速下降的原因之一.  相似文献   

16.
四川盆地夏季降水日变化的数值模拟   总被引:7,自引:1,他引:7       下载免费PDF全文
沈沛丰  张耀存 《高原气象》2011,30(4):860-868
利用区域气候模式RegCM3对1991-2004年四川盆地夏季降水进行了数值模拟,通过模拟结果和NCEP/NCAR再分析资料的对比,评估了模式对四川盆地夏季"夜雨"现象的模拟能力。结果表明,RegCM3模式能较好地模拟出四川盆地夏季降水的空间分布和日变化规律,四川盆地夏季"夜雨"现象的形成与该地区的地形分布有密切关系。...  相似文献   

17.
基于天山山区11个国家气象站2012—2018年夏季(6—8月)逐小时降水资料,使用百分位法计算极端降水阈值,分析极端降水特征量(包括极端降水量、极端降水频次、极端降水强度、极端降水贡献和极端降水量最大值)的日变化特征,揭示极端降水与海拔高度的关系。结果表明:87°E以东地区,极端降水量最大值出现的时间大致都存在自西向东顺时针变化的特点。极端降水主要以短持续性为主,极端降水贡献和极端降水量最大值的谷值都出现在白天。极端降水与海拔密切相关,总极端降水频次更多发生在高海拔地区,在海拔2 000 m左右存在一个极端降水最大值带。  相似文献   

18.
This paper summarizes the recent progress in studies of the diurnal variation of precipitation over con- tiguous China. The main results are as follows. (1) The rainfall diurnal variation over contiguous China presents distinct regional features. In summer, precipitation peaks in the late afternoon over the south- ern inland China and northeastern China, while it peaks around midnight over southwestern China. In the upper and middle reaches of Yangtze River valley, precipitation occurs mostly in the early morning. Summer precipitation over the central eastern China (most regions of the Tibetan Plateau) has two diurnal peaks, i.e., one in the early morning (midnight) and the other in the late afternoon. (2) The rainfall diurnal variation experiences obvious seasonal and sub-seasonal evolutions. In cold seasons, the regional contrast of rainfall diurnal peaks decreases, with an early morning maximum over most of the southern China. Over the central eastern China, diurnal monsoon rainfall shows sub-seasonal variations with the movement of summer monsoon systems. The rainfall peak mainly occurs in the early morning (late afternoon) during the active (break) monsoon period. (3) Cloud properties and occurrence time of rainfall diurnal peaks are different for long- and short-duration rainfall events. Long-duration rainfall events are dominated by strat- iform precipitation, with the maximum surface rain rate and the highest profile occurring in the late night to early morning, while short-duration rainfall events are more related to convective precipitation, with the maximum surface rain rate and the highest profile occurring between the late afternoon and early night. (4) The rainfall diurnal variation is influenced by multi-scale mountain-valley and land-sea breezes as well as large-scale atmospheric circulation, and involves complicated formation and evolution of cloud and rainfall systems. The diurnal cycle of winds in the lower troposphere also contributes to the regional differences  相似文献   

19.
庐山不同高度雨滴谱分析   总被引:2,自引:0,他引:2  
选取在庐山不同高度处测得的一次对流云降水过程资料,结合Hu等相关研究结果,分析了雨滴下落过程中各种物理机制的重要作用,并采用两种不同的水滴下落末速度经验公式,分别比对了不同高度处雨滴下落的末速度.所得结论如下:蒸发作用降低了小雨滴(D≤0.3 mm)和较大雨滴(1.5 mm<D<3.0 mm)的数浓度,增加了中等大小雨滴(0.3 mm<D≤1.5 mm)的数浓度.大小雨滴在降雨不同时期和不同高度对含水量的贡献是不同的.雨滴直径在0.5~5.0 mm区间内,下落末速度经验关系式V(D) =9.65-10.3e-0.6D适用于海拔较高处;雨滴直径大于5.0 mm时,经验关系式V(D)=3.778D0.67适用于海拔较低处.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号