首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Accurate calculation of the environmental radiation dose rate (Ḋ) is an essential part of trapped charge dating methods, such as luminescence and electron spin resonance dating. Although the calculation of Ḋ is not mathematically complex, the incorporation of multiple variables and the propagation of uncertainties can be challenging. The Dose Rate and Age Calculator (DRAC) is an open access, web-based program which enables rapid Ḋ calculation for trapped charge dating applications. Users can select from recently published attenuation and conversion factors to make mathematically robust, reproducible Ḋ calculations. Comparison of DRAC calculated Ḋ values against the published Ḋ determinations of 422 samples from 32 studies results in a reproducibility ratio of 1.01 ± 0.05. It is anticipated that DRAC will facilitate easier inter-laboratory comparisons and will provide greater transparency for Ḋ calculations. DRAC will be updated to reflect the latest advances in Ḋ calculation and is freely accessible at www.aber.ac.uk/alrl/drac. The code for DRAC is available from github at https://github.com/DRAC-calculator/DRAC-calculator.  相似文献   

2.
A MS6.8 earthquake occurred on 5th September 2022 in Luding county, Sichuan, China, at 12: 52 Beijing Time(4:52 UTC). We complied a dataset of PGA, PGV, and site vS30 of 73 accelerometers and 791 Micro-Electro-Mechanical System(MEMS)sensors within 300 km of the epicenter. The inferred vS30 of 820 recording sites were validated. The study results show that:(1)The maximum horizontal PGA and PGV reaches 634.1 Gal and 71.1 cm/s respectively.(2) Over 80% of records ar...  相似文献   

3.
This paper presents a comprehensive experimental campaign developed on a stretch of the Portuguese railway network. The experimental work includes three fundamental and complementary components: the characterization of the ground, the characterization of the track and the measurement of the vibrations generated by railway traffic. The characterization of the ground was performed using a combination of conventional and geophysical tests (cross-hole and SASW). The mechanical characterization of the track was performed through receptance tests and the rail unevenness profile was accurately measured. The vibrations due to the passage of more than 20 trains were measured. First, a selection of the results is presented and analysed in detail; later, the variability of the responses is briefly discussed. The presented data may be used by other researchers (e.g. in the validation of their prediction models), since it can be downloaded from www.fe.up.pt/~csf/DataCarregado.zip.  相似文献   

4.
This paper outlines an experimental analysis of ground-borne vibration levels generated by high speed rail lines on various earthwork profiles (at-grade, embankment, cutting and overpass). It also serves to provide access to a dataset of experimental measurements, freely available for download by other researchers working in the area of railway vibration (e.g. for further investigation and/or the validation of vibration prediction models).First, the work outlines experimental investigations undertaken on the Belgian high speed rail network to investigate the vibration propagation characteristics of three different embankment conditions. The sites consist of a 5.5 m high embankment, an at-grade section and a 7.2 m deep cutting. The soil material properties of each site are determined using a ‘Multichannel Analysis of Surface Waves’ technique and verified using refraction analysis. It is shown that all sites have relatively similar material properties thus enabling a generalised comparison.Vibration levels are measured in three directions, up to 100 m from the track due to three different train types (Eurostar, TGV and Thalys) and then analysed statistically. It is found that contrary to commonly accepted theory, vertical vibrations are not always the most dominant, and that horizontal vibrations should also be considered, particularly at larger offsets. It is also found that the embankment earthworks profile produced the lowest vibration levels and the cutting produced the highest. Furthermore, a low (positive) correlation between train speed and vibration levels was found. A selection of the results can be downloaded from www.davidpconnolly.com.  相似文献   

5.
6.
This article illustrates the results of a study aimed at developing a methodology for the automatic identification of the seismic input at outcropping rock sites and flat topographic conditions necessary to carry out non-linear dynamic analysis of structures and geotechnical systems. The seismic input is provided in terms of a set of 7 natural accelerograms recorded on outcropping rock and satisfying the average spectral compatibility requirements prescribed by the Italian seismic code (NTC08).The study focuses on the territory encompassing Tuscany region in Central Italy and it has been carried out for six return periods, which are 50, 75, 101, 475, 712 and 949 years. The procedure involved four main steps: (1) grouping of the response spectra with similar features; (2) definition of the reference response spectrum for each group; (3) selection of spectrum-compatible accelerograms using the reference response spectrum of each group; and (4) linear scaling of the accelerograms to satisfy the compatibility requirement with respect to other response spectra of the group. The last step is implemented through an interactive, user-friendly program named SCALCONA 2.0, which provides the seismic input in agreement with the site location and return period specified by the user. The program is freely available at the following web site: http://www.rete.toscana.it/sett/pta/sismica/01informazione/banchedati/input_sismici/progettazione/index.htm.  相似文献   

7.
New solar indices have been developed to improve thermospheric density modeling for research and operational purposes. Out of 11 new and 4 legacy indices and proxies, we have selected 3 (F10.7, S10.7, and M10.7) for use in the new JB2006 empirical thermospheric density model. In this work, we report on the development of these solar irradiance indices. The rationale for their use, their definitions, and their characteristics, including the IS 21348:2007 spectral category and sub-category, wavelength range, solar source temperature region, solar source feature, altitude region of terrestrial atmosphere absorption at unit optical depth, and terrestrial atmosphere thermal processes in the region of maximum energy absorption, are described. We also summarize for each solar index the facility and instrument(s) used to observe the solar emission, the time frame over which the data exist, the measurement cadence, the data latency, and the research as well as operational availability. The new solar indices are provided in forecast as well as real time and historical time frames (http://SpaceWx.com JB2006 Quicklink). We describe the forecast methodology, compare results with actual data for active and quiet solar conditions, and compare improvements in F10.7 forecasting with legacy HASDM and NOAA SWPC forecasts.  相似文献   

8.
The Earth's trapped radiation belts were discovered at the beginning of the space age and were immediately recognised as a considerable hazard to space missions. Consequently, considerable effort was invested in building models of the trapped proton and electron populations, culminating in the NASA AP-8 and AE-8 models which have been de facto standards since the 1970s. The CRRES mission has demonstrated that the trapped radiation environment is much more complex than the static environment described by the old models. Spatial and especially temporal variations were shown to be much more important than previously thought, and to require more complex models than those in use at that time. Such models are now becoming available, but they are as yet limited in spatial and temporal coverage. It is vital to coordinate future modelling efforts in order to develop new standard models.The lack of standardisation of radiation belt models complicates their use in engineering applications where particle fluxes are needed as input to radiation effects models. ESA's SPace ENVironment Information System (SPENVIS) provides standardised access to models of the hazardous space environment, including but not limited to radiation effects, through a user-friendly World Wide Web interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. The system can be accessed at the WWW site http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes.  相似文献   

9.
Well-dated bedrock surfaces associated with the highstand and subsequent catastrophic draining of Pleistocene Lake Bonneville, Utah, during the Bonneville flood are excellent locations for in situ cosmogenic nuclide production rate calibration. The CRONUS-Earth project sampled wave-polished bedrock and boulders on an extensive wave-cut bench formed during the Bonneville-level highstand that was abandoned almost instantaneously during the Bonneville flood. CRONUS-Earth also sampled the Tabernacle Hill basalt flow that erupted into Lake Bonneville soon after its stabilization at the Provo level, following the flood. New radiocarbon dating results from tufa at the margins of Tabernacle Hill as part of this study have solidified key aspects of the exposure history at both sites. Both sites have well-constrained exposure histories in which factors such as potential prior exposure, erosion, and shielding are either demonstrably negligible or quantifiable. Multi-nuclide analyses from multiple labs serve as an ad hoc inter-laboratory comparison that supplements and expands on the formalized CRONUS-Earth and CRONUS-EU inter-laboratory comparisons (Blard et al., 2015; Jull et al., 2015; Vermeesch et al., 2015). Results from 10Be, 26Al, and 14C all exhibit scatter comparable to that observed in the CRONUS-Earth effort. Although a 36Cl inter-laboratory comparison was not completed for Jull et al. (2015), 36Cl from plagioclase mineral separates exhibits comparable reproducibility. Site production rates derived from these measurements provide valuable input to the global production rate calibration described by Borchers et al. (2015). Whole-rock 36Cl concentrations, however, exhibit inter-laboratory variation exceeding analytical uncertainty and outside the ranges observed for the other nuclides (Jull et al., 2015). A rigorous inter-laboratory comparison studying the systematics of whole-rock 36Cl extraction techniques is currently underway with the goals of delineating the source(s) of this discrepancy and standardizing these procedures going forward.  相似文献   

10.
A previous study [Water Resour Res 39 (3) (2003) doi:10.1029/2002WR001338] questioned the validity of the traditional advection–dispersion equation for describing gas flow in porous media. In an original mathematical derivation presented in Part 1 [Adv Water Resour, this issue] we have demonstrated the theoretical existence of two novel physical phenomena which govern the macroscopic transport of gases in porous media. In this work we utilize laboratory experiments and numerical modeling in order to ascertain the importance of these novel theoretical terms. Numerical modeling results indicate that the newly derived sorptive velocity, arising from closure level coupling effects, does not contribute noticeably to the overall flux, under the conditions explored in this work. We demonstrate that the newly discovered “slip coupling” phenomenon in the mass conservation equation plays an important role in describing the physics of gas flow through porous solids for flow regimes of both environmental and industrial interest.  相似文献   

11.
van Loon et al. [2007. Coupled air–sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research 112, D02108, doi:10.1029/2006JD007378] showed that the Pacific Ocean in northern winter is sensitive to the influence of the sun in its decadal peaks. We extend this study by three solar peaks to a total of 14, examine the response in the stratosphere, and contrast the response to solar forcing to that of cold events (CEs) in the Southern Oscillation. The addition of three solar peak years confirms the earlier results. That is, in solar peak years the sea level pressure (SLP) is, on average, above normal in the Gulf of Alaska and south of the equator, stronger southeast trades blow across the Pacific equator and cause increased upwelling and thus anomalously lower sea surface temperatures (SSTs). Since the effect on the Pacific climate system of solar forcing resembles CEs in the Southern Oscillation, we compare the two and note that, even though their patterns appear similar in some ways, they are particularly different in the stratosphere and are thus due to separate processes. That is, in July–August (JA) of the year leading into January–February (JF) of the solar peak years, the Walker cell expands in the Pacific troposphere, and the stratospheric wind anomalies are westerly below 25 hPa and easterly above, whereas this signal in the stratosphere is absent in CEs. Thus the large-scale east–west tropical atmospheric (Walker) circulation is enhanced, though not to the extent that it is in CEs in the Southern Oscillation, and the solar influence thus appears as a strengthening of the climatological mean regional precipitation maxima in the tropical Pacific. Additionally, CEs have a 1-year evolution, while the response to solar peaks extends across 3 years such that the signal in the Pacific SLP of the solar peaks is similar but weaker in the year leading into the peak and in the year after the peak. The concurrent negative SST anomalies develop during the year before the solar peak, and after the peak the anomalies are still present but are waning. In the stratosphere in solar peaks, the equatorial quasi-biennial oscillation (QBO) is amplified when it is in its westerly phase in the lower stratosphere and easterly phase above; and the QBO is suppressed when in its easterly phase below–westerly phase above. Such an association is not evident in CEs.  相似文献   

12.
The possibility of quantifying surface processes in mafic or volcanic environment using the potentialities offered by the in situ-produced cosmogenic nuclides, and more specifically by the in situ-produced 10Be, is often hampered by the rarity of quartz minerals in the available lithologies. As an alternative to overcome this difficulty, we explore in this work the possibility of relying on feldspar minerals rather that on quartz to perform in situ-produced 10Be measurements in such environments. Our strategy was to cross-calibrate the total production rate of 10Be in feldspar (P10fsp) against the total production rate of 3He in pyroxene (P3px) by measuring 3He and 10Be in cogenetic pyroxene (3Hepx) and feldspar (10Befsp). The samples were collected from eight ignimbritic boulders, exposed from ca 120 to 600 ka at elevations ranging from 800 to 2500 m, along the preserved rock-avalanche deposits of the giant Caquilluco landslide (18°S, 70°W), Southern Peru. Along with data recently published by Blard et al. (2013a) at a close latitude (22°S) but higher elevation (ca. 4000 m), the samples yield a remarkably tight cluster of 3Hepx - 10Befsp total production ratios whose weighted-mean is 35.6 ± 0.5 (1σ). The obtained weighted-mean 3Hepx - 10Befsp total production ratio combined with the local 3Hepy total production rate in the high tropical Andes published by Martin et al. (2017) allows to establish a total SLHL 10Be in situ-production rate in feldspar mineral (P10fsp) of 3.57 ± 0.21 at.g−1.yr−1 (scaled for the LSD scaling scheme, the ERA40 atm model and the VDM of Lifton, 2016).Despite the large elevation range covered by the whole dataset (800–4300 m), no significant variation of the 3Hepx - 10Befsp total production ratios in pyroxene and feldspar was evidenced. As an attempt to investigate the effect of the chemical composition of feldspar on the total 10Be production rate, major and trace element concentrations of the studied feldspar samples were analyzed. Unfortunately, giving the low compositional variability of our dataset, this issue is still pending.  相似文献   

13.
Precise 40Ar/39Ar age determinations made on basalt groundmass collected from the SP and upper and lower Bar Ten lava flows in the San Francisco and Uinkaret volcanic fields of Arizona, USA, yield ages of 72 ± 4, 97 ± 10, and 123 ± 12 ka (2σ; relative to Renne et al., 2010, 2011, full external precision), respectively. Previous ages of the SP lava flow include a K–Ar age of 70 ± 8 ka and OSL ages of 5.5–6 ka. 40Ar/39Ar age constraints, relative to the optimization model of Renne et al. (2010, 2011), of 81 ± 50 and 118 ± 64 ka (2σ; full external precision) were previously reported for the upper and lower Bar Ten lava flows, respectively. The new 40Ar/39Ar ages are within uncertainty of previous age constraints, and are more robust, accurate, and precise. Preliminary cosmogenic 3He and 21Ne production rates from the Bar Ten flows reported by Fenton et al. (2009) are updated here, to account for the improved quality of the 40Ar/39Ar data. The new 40Ar/39Ar age for the SP flow yields cosmogenic 3He and 21Ne production rates for pyroxene (119 ± 8 and 26.8 ± 1.9 at/g/yr; error-weighted mean, 2σ uncertainty; Dunai (2000) scaling method) that are consistent with production rate values reported throughout the literature. The 40Ar/39Ar and cosmogenic 3He and 21Ne data support field observations indicating the SP flow has undergone negligible erosion. The SP flow contains co-existing phenocrysts of olivine and pyroxene, as well as xenocrysts of quartz in a fine-grained groundmass facilitating cross-calibration of cosmogenic production rates and production-rate (3He, 10Be, 14C, 21Ne, 26Al, and 36Cl). Thus, we propose the SP flow is an excellent location for a cosmogenic nuclide production-rate calibration site (SPICE: the SP Flow Production-Rate Inter-Calibration Site for Cosmogenic-Nuclide Evaluations).  相似文献   

14.
Cosmogenic 3He can be used to date a wide range of mineral phases because it is produced from all target elements and can be readily measured above atmospheric contamination. Calcite is a particularly attractive target mineral due to its natural abundance, large crystal size (>1 mm), and low He closure temperature (<70 °C), which limit non-cosmogenic 3He components (Copeland et al., 2007). However, several recent studies have shown that some calcite may not be retentive to helium, even under surface temperatures (Cros et al., 2014; Copeland et al., 2007). This study thus explores 3He retention and production in natural calcite samples at four different sites. Samples from two high elevation sites appear retentive to 3He over 10 kyr timescales, whereas two additional sites clearly suffer from diffusive loss of 3He. Step-degassing experiments suggest that diffusion in calcite is controlled by multiple diffusion domains, with an apparent activation energy of 25–27 kcal mol−1. Although minor 3He loss is expected from the smallest diffusion domains, the observed kinetics cannot explain the poor retention at all sites. We thus propose that opaque (non-transparent) calcite may be more retentive due to the presence of imperfections in the crystal lattice. We conclude that 3He dating of calcite shows promise in some settings. However, because retention depends on crystallographic variability it must be evaluated on a case-by-case basis until robust criteria for retention can be identified.  相似文献   

15.
The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux (“log-flux”) to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133–15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8–6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 (τ=2±1 d; L=5.8±0.5; E=0.8–6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8–1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8–6.4 MeV) is associated with the “Dst effect” or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.  相似文献   

16.
3He is among the most commonly measured terrestrial cosmogenic nuclides, but an incomplete understanding of the 3He production rate has limited robust interpretation of cosmogenic 3He concentrations. We use new measurements of cosmogenic 3He in olivine from a well-dated lava flow at Tabernacle Hill, Utah, USA, to calibrate the local 3He production rate. The new 3He measurements (n = 8) show excellent internal consistency and yield a sea level high latitude (SLHL) production rate of 123 ± 4 at g?1 yr?1 following the Lal (1991)/Stone (2000) scaling model [Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104, 424–439.; Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 23753–23759.]. We incorporate the new measurements from Tabernacle Hill in a compilation of all published production rate determinations, characterizing the mean global SLHL production rates (e.g. 120 ± 9.4 at g?1 yr?1 with Lal (1991)/Stone (2000)). The internal consistency of the global 3He production rate dataset is as good as the other commonly used cosmogenic nuclides. Additionally, 3He production rates in olivine and pyroxene agree within experimental error. The 3He production rates are implemented in an age and erosion rate calculator, forming a new module of the CRONUS-Earth web-based calculator, a simple platform for cosmogenic nuclide data interpretation [Balco, G., Stone, J., Lifton, N.A., and Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174–195.]. The 3He calculator is available online at http://www.cronuscalculators.nmt.edu/.  相似文献   

17.
18.
We present a sensitivity analysis of the isochron approach of Goehring et al. (2013) for paired measurements of in situ 14C/10Be from glacially sculpted bedrock surfaces. This analysis tests how sensitive the resulting exposure durations from this technique are to both the number of samples analyzed and their locations along a glacial trough transect, using a dataset from Goehring et al. (2011) as a test case. A simple equally weighted combinatorial approach was employed to (1) generate non-repetitive combinations of n subsets of samples arranged from the ten possible samples (where n < 10), and (2) estimate the exposure duration and uncertainty for each set of simulations. Results from the Goehring et al. (2011) data indicate that five samples evenly distributed along a transect parallel to the ice margin are the minimum number of samples required for this method, while eight or more samples provide an optimal combination of accuracy and precision at the 1σ level. These findings should be applicable to paired in situ 14C/10Be measurements from other polished bedrock troughs at glacial margins, but need further experimental confirmation.  相似文献   

19.
To constrain the depth-dependence of in situ 14C production we measured the cosmogenic 14C concentration of quartz separates along a quartzite core from the Leymon High site in northwest Spain. A total of 16 quartz samples were measured over a depth range of 1–1545 cm (3–4017 g cm−2). The obtained 14C profile was modeled using a neutron production rate, exponentially decreasing with depth, and a fast and negative muon production parameterized as a function of the local muon flux as derived by (Heisinger et al., 2002a, 2002b). This model yields a total negative muon capture probability of 1.72 (+0.22/−0.56) × 10−2 and a fast muon reaction cross section of 0 (+11.8/−0.00) μb. Rescaled to sea level high latitude using a Lal/Stone scaling scheme, these estimates yield a surface muon production rate of 3.31 (+0.43/−1.07) and 0 (+0.42/−0.00) at·g−1 yr−1 for negative muon capture and fast muons, respectively. This is the first muon production estimate for in situ 14C from a natural setting and is within uncertainty of the previous experimental estimates. The present contribution also provides new long-term blank and standard (PP-4, CRONUS-A & CRONUS-N) in situ 14C data from the ETH Zürich 14C extraction line.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号