首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six volcanic zones comprise São Miguel, the largest island in the Azores. All are Quaternary in age except the last, which is partly Pliocene. From west to east the zones are (1) the trachyte stratovolcano of Sete Cidades, (2) a field of alkali-basalt cinder cones and lava flows with minor trachyte, (3) the trachyte stratovolcano of Agua de Pau, (4) a field of alkali-basalt cinder cones and lava flows with minor trachyte and tristanite, (5) the trachyte stratovolcano of Furnas, and (6) the Nordeste shield, which includes the Povoação caldera and consists of alkali basalt, tristanite, and trachyte. New radiocarbon and K-Ar ages augment stratigraphic data obtained during recent geologic mapping of the entire island and provide improved data to interpret eruption frequency. Average dormant intervals for the past approximately 3000 years in the areas active during that time are about 400 years for Sete Cidades, 145 for zone 2, 1150 for Agua de Pau, and 370 for Furnas. However, the average dormant interval at Sete Cidades increased from 400 to about 680 years before each of the past two eruptions, and the interval at Furnas decreased from 370 to about 195 years before each of the past four eruptions. Eruptions in zone 4 occurred about once every 1000 years during latest Pleistocene and early Holocene time; none has occurred for about 3000 years. The Povoação caldera truncates part of the Nordeste shield and probably formed during the middle to late Pleistocene. Calderas formed during latest Pleistocene time at the three younger stratovolcanoes in the sequence: outer Agua de Pau (between 46 and 26.5 ka), Sete Cidades (about 22 ka), inner Agua de Pau (15.2 ka), and Furnas (about 12 ka). Normal faults are common, but many are buried by Holocene trachyte pumice. Most faults trend northwest or west-northwest and are related to the Terceira rift, whose most active segment on São Miguel passes through Sete Cidades and zone 2. A major normal fault displaces Nordeste lavas 150–250 m and may mark the location of an ancestral Terceira rift. Recent seismicity (e.g., in the 1980s) generally has been scattered, but some small earthquake swarms have occurred beneath the north-eastern flank of Agua de Pau.  相似文献   

2.
The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (< 3000 yr BP). These deposits were chosen to represent the range of likely explosive activity from the caldera.  相似文献   

3.
Since October 2001, four soil CO2 flux stations were installed in the island of São Miguel (Azores archipelago), at Fogo and Furnas quiescent central volcanoes. These stations perform measurements by the accumulation chamber method and, as the gas flux may be influenced by external variables, the stations are equipped with several meteorological sensors. Multivariate regression analysis applied to the large datasets obtained allowed observing that the meteorological variables may influence the soil CO2 flux oscillations from 18% to 50.5% at the different monitoring sites. Additionally, it was observed that meteorological variables (mainly soil water content, barometric pressure, wind speed and rainfall) play a different role in the control of the gas flux, depending on the selected monitoring site and may cause significant short-term (spike-like) fluctuations. These divergences may be potentially explained by the porosity and hydraulic conductivity of the soils, topographic effects, drainage area and different exposure of the monitoring sites to the weather conditions. Seasonal effects are responsible for long-term oscillations on the gas flux.  相似文献   

4.
We determine the three-dimensional distribution of P- and S-wave velocities for Central São Miguel Island (Azores, Portugal) by tomographic inversion of local earthquake arrival times. We use P- and S-phases from 289 earthquakes recorded by a network of 20 seismometers. The model shows good resolution in the shallowest 5–6 km, as illustrated by different resolution tests. There are several velocity anomalies, interpreted as pyroclastic deposits, intrusive bodies, geothermal fields, and the effects of tectonics. A low Vp zone marks Furnas caldera, probably evidencing volcaniclastic sediments with development of intense geothermal activity. Another low Vp zone extends in correspondence of the highly fractured area between Fogo and the north coast. Conversely, strong positive anomalies are found south of Fogo and northwest of Furnas. They are interpreted in terms of high-density deposits and remnants of a plutonic intrusion. These interpretations are supported by the distribution of Vp/Vs, and are consistent with previous geological, geochemical, and geophysical data.  相似文献   

5.
Sete Cidades is a central volcano with a summit caldera at the western end of São Miguel Island, Azores. Its stratigraphy comprises two main geological groups: the Inferior Group, the units of which date from more than 200 000 years ago through to 36 000 years before present, consisting of thick lava flows and subaerial volcaniclastic deposits that built the base of the central volcano; and the Superior Group which comprises all the activity from the last 36 000 years, including pumice and scoria fallout and PDC deposits with minor lava flows. The volcanostratigraphy is divided into six main formations — Risco, Ajuda, Bretanha, Lombas, Santa Bárbara and Lagoas, each defined by different activity phases in the volcano's evolution.  相似文献   

6.
Mineral and thermal water chemistry from the Azores archipelago was investigated in order to discriminate among hydrochemical facies and isotopic groups and identify the major geochemical processes that affect water composition. A systematic geochemical survey of mineral and thermal water chemistry was carried out, incorporating new data as well as results from the literature. The Azores are a volcanic archipelago consisting of nine islands and samples were collected at São Miguel, Graciosa, Faial, São Jorge, Pico and Flores islands. Hydrothermal manifestations show the effects of active volcanism on several islands. Discharges are mainly related to active Quaternary central volcanoes, of basaltic to trachytic composition, but also some springs are related to older dormant or extinct volcanoes.Multivariate analysis – principal component and cluster analysis – enables classification of water compositions into 4 groups and interpretation of processes affecting water compositions. Groups 1 and 2 discharge from perched-water bodies, and mostly correspond to Na–HCO3 and Na–HCO3–Cl type waters. These groups comprise of cold, thermal (27 °C–75 °C) and boiling waters (92.2 °C–93.2 °C), with a wide TDS range (77.3–27, 145.7 mg/L). Group 3 is made of samples of dominated Na–SO4 from very acid boiling pools (pH range of 2.02–2.27) which are fed by steam-heated perched-water bodies. Group 4 is representative of springs from the basal aquifer system and corresponds to Na–Cl type fluids, with compositions dominated by seawater.Results are used to further develop a conceptual model characterizing the geochemical evolution of the studied waters. Mineral and thermal waters discharging from perched-water bodies are of meteoric origin and chemically evolve by absorption of magmatic volatiles (CO2) and by a limited degree of rock leaching. Existing data also suggest mixture between cold waters and thermal water. Water chemistry from springs that discharge from the basal aquifer system evolves by mixing with seawater; although, processes such as absorption of magmatic volatiles (CO2), rock leaching and mixture with hydrothermal waters are not excluded by the data because the actual composition of these waters deviates from that expected considering only conservative mixing between fresh and seawater.  相似文献   

7.
 Tufa Trig Formation comprises a sequence of at least 19 andesitic tephras erupted from Mt. Ruapehu (Tongariro Volcanic Centre, New Zealand). Tephras of Tufa Trig Formation are the most recent eruptives from Ruapehu, dated between ca. 1850 years B.P. and the present. Members of the Formation show restricted dispersals, principally to the east of Mt. Ruapehu. Volumes calculated for the most widespread members are all less than 0.1 km3. Compared with other Mt. Ruapehu eruptives, Tufa Trig Formation tephras represent small eruptions that have contributed little tephra to the ring plain. They do, however, show a greater frequency of eruption with one event occurring on average every 100 years. Tufa Trig Formation members Tf3–Tf18 are black to dark grey, vitric, coarse-ash and lapilli-grade tephras which mantle the relief. They contain juvenile vitric particles which exhibit varying degrees of vesicularity, together with free crystals of pyroxene and feldspar, and few lithic fragments. Several morphological types of vitric pyroclasts are recognised in these tephras, the dominant type being of equant blocky morphology with fracture-bound surfaces (type-1 morphology). Field characteristics, tephra distributions, and the morphologies and textures of constituent pyroclasts suggest that these members (Tf3–Tf18) are the products of small-volume hydrovolcanic eruptions resulting from the interaction of fresh magma and meteoric water. We propose that a source of this water was an ancestral crater lake which formed within the late Holocene ca. 3000 years B.P. The morphological, compositional, and chemical (major-element) characteristics of three Tufa Trig Formation Tephras are compared with those of two new tephras erupted from Ruapehu Volcano during the October 1995 eruptions which comprise part of a newly defined member (Tf19) of Tufa Trig Formation. The comparisons support our interpretation that the majority of the Tufa Trig Formation tephras are primarily the products of hydrovolcanic eruptions. Other members of the Formation (Tf1 and Tf2) are coarse-grained scoriaceous tephras and are interpreted to be the products of strombolian events. Received: 14 September 1996 / Accepted: 6 June 1997  相似文献   

8.
Mayor Island is a peralkaline rhyolitic caldera volcano characterised by numerous, sector-confined pyroclastic deposits, together with lavas forming at least five composite shields. Correlation of sequences between sectors is difficult because of the scarcity of island-wide marker beds. However, eight distal calc-alkaline fall tephras (ca. 7.3 14C ka to 64 ka) from Okataina and Taupo volcanic centres in the nearby Taupo Volcanic Zone (TVZ) have been identified on the island. These “foreign” TVZ tephras provide marker planes to correlate activity in different sectors of Mayor Island volcano, and refine an eruptive chronology. At least seventeen pyroclastic eruptions and fourteen lava-producing events (including multiple, shield-forming events) have occurred in the past ca. 64 ka. Age controls provided by the calc-alkaline tephras confirm the extremely local dispersal characteristics of many of the Mayor Island eruptives and show that K/Ar ages as young as 25–33 ka on obsidians with 4.2–4.4% K2O are reliable.  相似文献   

9.
Isotopic fractionation of 10B/11B provides a sound tool for identifying hydrogeochemical processes in complex areas, owing to its ability to discriminate between various scenarios. In addition, the occurrence of boron as a minor element in areas of active volcanism allows its use in comparison with concentrations of other conservative or non‐conservative ions. This allows the detection of water mixtures of diverse origin and temperature, deep or shallow, including fresh water, seawater and even brines. This tool was applied in studies of the volcanic islands of Ischia and São Miguel, across widely differing geographical and climatic contexts. Five groups of waters have been identified in Ischia Island: marine, transition, hot carbonated, cold carbonated and fresh waters. For São Miguel Island the identified groups are cold carbonic, hot carbonic, boiling and acidic boiling waters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Sedimentation of ejecta from volcanic plumes has been studied as a function of distance from the source in the Fogo A plinian deposit, Sao Miguel, Azores. The Fogo A trachytic pumice deposit is reversely graded and can be divided into two parts on the basis of pumice colour, abundance of syenite accessory lithic clasts and distribution. The lower syenite-poor part was dispersed to the south and was clearly influenced by wind. The upper syenite-rich part is coarsegrained and has a nearly symmetrical distribution around the vent. Elongation of isopachs to the east indicate a weak wind influence. The grain-size variations of lithic and crystal components in the upper coarse part were studied. Total accumulation and accumulation per unit area (expressed in kg/m2) show good fits to a gaussian function at distances greater than 7 km for grain diameters less than 2 cm. These results agree with a theoretical model for a radially spreading turbulent current moving over a quiescent fluid. The gaussian coefficient is shown to be a function of grain size and the flow rate of material into the umbrella region of the eruption column. The coefficient is therefore also a function of column height. The column height deduced from these data is 21 km, which is in broad agrrement with the column height of 27 km deduced from maximum clast dispersal using the method of Carey and Sparks (1986). The accumulation of clasts larger than 2 cm agrees with a theory for the fallout of clasts from the margins of the ascending eruption column, which treats the plume as a succession of large eddies that decrease their mass of particles as an exponential function of time. Calculations are also presented for the influence of the radial inflow of surrounding air into the column on the deposition of clasts. These calculations constrain the wind speed during the later part of the Fogo A eruption to be at most a few metres per second. The study has allowed four different dynamic categories of clast behaviour to be recognised in eruption columns.  相似文献   

11.
12.

During the period 1959 to 1964 recorded volcanic activity in the Azores islands (Atlantic Ocean) was manifested by fumarolic fields in S. Miguel, Terceira, Graciosa, Pico and Faial and by two submarine eruptions off Pico and S. Jorge. Fumarolic activity increased in the Faial Capelinhos vent (in eruption 1957–58) after December 1963; it is concluded that the phenomenon is related to the 1963 and 1964 eruptions in the S. Jorge Channel. During February 1964 an important seismic swarm of more than 500 earthquakes, with volcanic tremor, occurred in S. Jorge.

  相似文献   

13.
Widespread Plio-Pleistocene (2.43-0.06 Ma) tephra zones recognised in deep-sea cores from high latitudes (>60°) in the Southern Pacific Ocean were thought to have originated from calc-alkaline rhyolitic eruptions in New Zealand, some 5000 km distant. Electron microprobe analyses of the glasses reveal a wide diversity of alkalic felsic compositions, as well as minor components of basic and intermediate glasses, incompatible with a New Zealand Neogene source but similar to contemporaneous eruptives from the Antarctic region. Most tephra zones are trachytic; seven zones are peralkaline rhyolite. The rhyolitic zones represent a deep-sea record of widespread silicic eruptions from continental Antarctica, possibly Marie Byrd Land. The extent of these rhyolitic zones suggest a greater frequency of large explosive eruptions in Antarctica than previously documented. The coarse grain size of some of the shards (up to 3 mm), their great distance from the closest sources (>1600 km for some cores), and the presence of nonvolcanic ice-rafted debris indicate some of the glasses, especially the more basic compositions, may have been ice-rafted, contrary to previous suggestions of a fallout origin.  相似文献   

14.
Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east–west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50–60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.  相似文献   

15.
The central region of S?o Miguel Island is one of the most seismically active areas of the Azores archipelago. A revised analysis of the seismicity distribution at this region has, for the first time, shown that the seismicity is clustered in two distinct areas: the area around Fogo Volcano (Fogo) and the area around Congro maar (Congro), with each area having a highly localized swarm activity. From a total of about 15,000 events in the period from 2002 to 2010, 78 best located events were selected to make fault plane solutions using P-wave polarities and amplitude ratios. This set of fault plane solutions, and another six subsets derived from it, were inverted for the best fitting stress tensor. The stress tensor using all the 78 fault plane solutions is characterized by a subhorizontal ??1 striking WNW-ESE and a ??3 striking NNE-SSW, consistent with the regional stress field for this region. A similar result, using only the fault plane solutions located in the Fogo area, was obtained. On the other hand, for the Congro area, a local stress field seems to be superimposed on the regional field: subhorizontal ??3, striking NNE-SSW, and a near-vertical ??1. The same stress regime persists in the first 5?km depth, probably related to the upwelling of thermal fluids. The rising fluids generate horizontal extension at shallow depths, which favour the opening of cracks and the circulation and ascension of hydrothermal fluids. The stress regime deeper than 5?km is more uncertain; however, it is indicative of a compressional regime. Thus, it can be conclude that the smaller Fogo area appears to be dominated by the normal regional stress field while the high active Congro area seems to have a different, highly heterogeneous stress field dominated by local conditions.  相似文献   

16.
Of the five Middle Atlantic archipelagos, three, Azores, Canaries and Cape Verde, have been volcanically active probably from the mid-14th century onwards. Though Fogo is the only island in the Cape Verde group to show such activity, of all these islands it has erupted most frequently. Historic submarine vulcanism is associated only with the Azores. As per the imperfect data available, it is possible that the sixty five eruptions here recorded, have resulted in the production of some 24 km3 of lavas and ejecta. The matter of correlating vulcanism in these islands with Sunspot activity and/or Earth minima tides is open to question. Average peridiocity values for vulcanism are 8.1 years, for Sunspot activity, 11.1 years (1700–1965), and 18.6 years for Earth minima tides (1400–1978). Such extra-terrestrial agencies are to be considered more as trigger actions rather than basic causes of vulcanicity.  相似文献   

17.
Many volcanic forms resulting from phreatomagmatic eruptions of differentiated magmas have been studied in the Massif Central (France), in the Phlegrean Fields (Italy), and on Saõ Miguel island (Azores). They show a continuous series between explosion crater maar type — and the hyaoloclastic tuff-cone. An essential feature of this morphological series is the preponderance of tuff-rings resulting from subaerial eruptions. Subaerial tuff-rings of basic compositions are less common than maars. A thermodynamic approach shows that the quantity of heat supplied by the different kinds of magmas and the water / magma ratio are the essential parameters controlling the activity, and the resulting morohology of these volcanoes.  相似文献   

18.
The area located inside the São Sebastião volcanic crater, at the southeast end of Terceira Island (Azores), is characterized by an important amplification of ground motion with respect to the surrounding area, as clearly demonstrated by the spatial distribution of the damage that occurred during the Terceira earthquake (the strongest earthquake felt in the Island during the recent decades — 01/01/1980 — M = 7.2). Geological and geophysical studies have been conducted, to characterize the volcanic crater and understand the different site effects that occurred in the village of São Sebastião. The complexity of the subsurface geology, with intercalations of compact basalt and soft pyroclastic deposits, is associated to extreme vertical and lateral velocity contrasts, and poses a serious challenge to different geophysical characterization methods. The available qualitative model did not allow a complete understanding of the site effects. A new seismic campaign has been designed and acquired, and a single, geologically consistent geophysical model has been generated integrating the existing and new data. The new campaign included two cross-line P-wave seismic refraction profiles, four short SH-wave seismic reflection profiles, and seven multichannel surface wave acquisitions. The integration and joint interpretation of geophysical and geological data allowed mutual validation and confirmation of data processing steps. In particular, the use of refraction, reflection and surface wave techniques allowed facing the complexity of a geology that can pose different challenges to all the methods when used individually: velocity inversions, limited reflectivity, and lateral variations. It is shown how the integration of seismic data from different methods, in the framework of a geological model, allowed the geometrical and dynamic characterization of the site. Correlation with further borehole information, then allowed the definition of a subsoil model for the crater, providing information that allowed a better understanding of the earthquake site effects in the São Sebastião village. The new near-surface geological model includes a lava layer within the soft infill materials of the crater. This new model matches closely with the damage distribution map, and explains the spatial variation of building stock performance in the 1980 earthquake.  相似文献   

19.
San Miguel de La Palma is the northwestern island in the Canary group. An extensive vertical section through the island can be seen in the deep Caldera de Taburiente in the north of the island. The island in divided into four units: (1) the floor of the Caldera de Taburiente, (2) the remainder of the old volcano Tuburiente (El Time formation), (3) the El Paso tectonic basin, and (4) the Cumbre Vieja mountain land that forms the southern part of the island. The Caldera Floor formation consists of (1) a variety of deformed metamorphosed and metasomatised basaltic and trachytic rocks, (2) metamorphosed pyroclasts, and (3) bodies of gabbro, troctolite, wehrlite, dunite, alkalic gabbro and essexite. These rocks are cut by mafic and bostonitic dykes. The lavas and pyroclasts of the El Time formation overlie the Caldera Floor formation and generally dip outwards and away from the caldera. Alkalic basalts are the main lava type, followed by trachybasalts with lesser amounts of trachyandesite, trachyte and phonolite. The El Paso tectonic basin is a subsided segment of the volcano Tuburiente, and consists mainly of El Time formation rocks. All the major recorded eruptions have issued from the Cumbre Vieja mountain land. The eruptive products found in the mountain land range from alkalic basalt to phonolite. Pyroclasts and phonolitic lavas are more common than in the earlier formations. Tall spires of hauyne phonolite are found in a number of localities. The eruptive products now found on La Palma are believed to have developed from an alkaline basalt magma. Under normal circumstances this magma rose rapidly from the upper mantle, and erupted; however, when the La Palma volcanic edifice was large enough to accommodate a magma chamber differentiation took place; silica was removed, and both ultramafic cumulates, and trachytic and phonolitic differentiates were produced.  相似文献   

20.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号